Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Causa, Federica

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Advances in nano-enabled GaN photonic devicescitations

Places of action

Chart of shared publication
Shields, Philip, A.
1 / 13 shared
Liu, Chaowang
1 / 1 shared
Allsopp, Duncan W. E.
1 / 7 shared
Wang, Wang N.
1 / 2 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Shields, Philip, A.
  • Liu, Chaowang
  • Allsopp, Duncan W. E.
  • Wang, Wang N.
OrganizationsLocationPeople

article

Advances in nano-enabled GaN photonic devices

  • Shields, Philip, A.
  • Liu, Chaowang
  • Causa, Federica
  • Allsopp, Duncan W. E.
  • Wang, Wang N.
Abstract

In this work, the results are presented of a nanorod LED array. If the lateral size of the nanorods is small enough, it is possible to achieve a degree of lateral confinement. If the nanorods are ordered into a suitable photonic lattice, then this will reduce the lateral spontaneous emission and enhance emission along the vertical axis via the Purcell effect. Additionally there is a degree of dislocation filtering that can occur [1]. However, one potential drawback of this device is the large free surface that borders the multi-quantum well active region. Nevertheless, it has been shown that the surface recombination in the nitride materials is the lowest of all III-V semiconductors. Results of SEM, PL, EL, and far field pattern are presented to compare the progressive effect of using photo-assisted electroless and wet etching [2]. It can be seen that over time the photo-assisted electroless method clearly delineates the active MQW region, possibly as a result of the different etch rate of InGaN. Alternatively, a purely chemical etching method was used. With a narrowing of the nanorods, there is a progressive blue shift of the photoluminescence peak. The optical image of the emission shows that there are well-defined lines of enhanced light propagation that match the symmetry of the nanorod array, thus showing there is a photonic crystal effect.

Topics
  • impedance spectroscopy
  • surface
  • photoluminescence
  • scanning electron microscopy
  • nitride
  • dislocation
  • III-V semiconductor
  • wet etching