People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jocou, L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
The GRAVITY integrated optics beam combination
Abstract
Gravity is a 2nd generation interferometric instrument for VLTI. It will combine 4 telescopes in dual feed in the K band to study general relativity effects around the Galactic Center black hole. The concept of Gravity is based on two equivalent beam combiner instruments: the scientific one fed by the science target (Sgr A*) and the fringe tracker fed by a bright reference star (See Gillessen et al.<SUP>1</SUP>). Both beam combination instruments are based on silica on silicon integrated optics (IO) component glued to fluoride glass fiber array. The beam combiners are implemented in a cryogenic vessel cooled at 200°K and back-illuminated by a high power laser used for metrology (Bartko et al.<SUP>2</SUP>). This paper is dedicated to the description of the development of the integrated beam combiner assembly.