People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lacourt, P. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass
Abstract
<p>Although ultrafast lasers have demonstrated much success in structuring and ablating dielectrics on the micrometer scale and below, high aspect ratio structuring remains a challenge. Specifically, microfluidics or lab-on-chip DNA sequencing systems require high aspect ratio sub-10 μm wide channels with no taper. Micro-dicing also requires machining with vertical walls. Backside water assisted ultrafast laser processing with Gaussian beams allows the production of high aspect ratio microchannels but requires sub-micron sample positioning and precise control of translation velocity. In this context, we propose a new approach based on Bessel beams that exhibit a focal range exceeding the Rayleigh range by over one order of magnitude. An SLM-based setup allows us to produce a Bessel beam with central core diameter of 1.5 μm FWHM extending over a longitudinal range of 150 μm. A working window in the parameter space has been identified that allows the reliable production of high aspect ratio taper-free microchannels without sample translation. We report a systematic investigation of the damage morphology dependence on focusing geometry and energy per pulse.</p>