People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jr., R. F. Haglund
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Spectral modulation of single plasmonic nanostructures
Abstract
We discuss in this paper the feasibility of dynamically modulating both resonance wavelength and spectral width of single nanostructures exhibiting plasmonic effects by cycling through a metal-insulator transition (MIT) in vanadium dioxide (VO<sub>2</sub>). Using full-field 3D finite-difference time domain (FDTD) simulation method with nonuniform mesh techniques, we study the effects of this modulation by varying the lateral dimensions of these nanostructures from 40 nm to 120 nm radially and changing its configuration as well, that is VO<sub>2</sub> nanodisk on gold one and vice-versa. As an initial step towards fabricating those single composite nanostructures showing the greatest modulating effect, we start by making single NPs of VO<sub>2</sub> and single gold NPs embedded between two 60 nm layers of VO<sub>2</sub>. The samples are fabricated on 130 μm thin glass substrates by electron-beam lithography, pulsed laser deposition of VO<sub>2</sub> and electron-beam evaporation of gold. Using confocal extinction spectroscopy, we hereafter provide for the first time experimental observations of spectral tuning in these lithographically prepared single nanostructures. However, we discussed the variability in spectra obtained. Indeed, as the gold NP size decreases, it becomes comparable to the domain sizes of the embedding VO<sub>2</sub> and this prevent the correct acquisition of the flat field. Hence the study of the tunability of gold particle plasmon resonance is imparted. However, we conclude that this study will be feasible for truly hybridized NP, that is gold nanodisk stacked on VO<sub>2</sub> nanodisk and vice-versa. As hinted by our simulation studies and preliminary experimental results, these hybridized composite NPs could potentially be used in the dynamic spectral tuning of plasmonic waveguides.