People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hughes, Mark A.
University of Salford
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2018High speed chalcogenide glass electrochemical metallization cells with various active metalscitations
- 2014Optical and electronic properties of bismuth-implanted glassescitations
- 2014n-type chalcogenides by ion implantationcitations
- 2014n-type chalcogenides by ion implantation.citations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses ; Analogie mezi fotoluminescencí a změnou typu vodivosti v Bi- a Pb-dotovaných sklechcitations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glassescitations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi-and Pb-doped glassescitations
- 2012Direct laser writing of relief diffraction gratings into a bulk chalcogenide glasscitations
- 2011Determination of the oxidation state and coordination of a vanadium doped chalcogenide glasscitations
- 2010The efficiencies of energy transfer from Cr to Nd ions in silicate glassescitations
- 2009Spectral broadening in femtosecond laser written waveguides in chalcogenide glasscitations
- 2009Ultrabroad emission from a bismuth doped chalcogenide glasscitations
- 2007Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glasscitations
- 2007Concentration dependence of the fluorescence decay profile in transition metal doped chalcogenide glasscitations
- 2007Modified chalcogenide glasses for optical device applications
Places of action
Organizations | Location | People |
---|
article
The efficiencies of energy transfer from Cr to Nd ions in silicate glasses
Abstract
The efficiency of energy transfer from Cr to Nd in silicate glasses has been examined in order to develop a gain medium for high-efficiency solar pumped fiber lasers (SPFLs). The internal quantum efficiency (QE) of the emission from the 4T2 state of Cr in Cr-doped glasses and from the 4F3/2 state of Nd in Nd-doped and Nd,Cr codoped glasses was measured using an integrating sphere. For Cr-doped and Nd,Cr codoped glasses, 650 nm excitation was used. For Nd-doped glasses, 808 nm excitation was used. The QE of Cr-doped glass (η Cr) was 7.5 % for 0.05 mol.% Cr2O3, the QE decreased monotonically with increasing Cr2O3 content. The QE of the Nd-doped glass (η Nd) has a maximum of 43% at 0.2 mol.% Nd2O3. We suggest that absorption of host glass could lower the QE at the low content side of the maximum. The QE of Nd emission in Nd,Cr codoped glass (η Nd,Cr) excited at 650 nm, which excites the 4A2→4T2 transition of Cr was 5.7 % for 0.05 mol.% Cr2O3 and 0.2 mol.% Nd2O3 content. The energy transfer quantum efficiency, η tr, from Cr to Nd which is defined as the ratio of the η Cr and the η Nd,Cr was calculated from the obtained QEs. The largest η tr was 13.4 % at 0.01 mol.% Cr2O3, and decreased with increasing Cr2O3 when content of Nd2O3 was fixed by 0.2 mol.%. This tendency is quite similar to the QEs of the Cr emission in Cr-doped glasses. Thus an increase in the QE of Cr maybe essential to increase the η tr.