Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Rongsheng

  • Google
  • 2
  • 12
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2008A novel fibre optic acoustic emission sensor5citations
  • 2008Chemical process monitoring and the detection of moisture ingress in composites - art. no. 69330Rcitations

Places of action

Chart of shared publication
Bryce, G.
1 / 1 shared
Fernando, Gerard
2 / 22 shared
Gower, M.
1 / 4 shared
Theobald, P.
1 / 1 shared
Burns, Jonathan
1 / 1 shared
Fernandes, E.
1 / 3 shared
Malik, Shoaib
1 / 2 shared
Machavaram, Venkata
1 / 2 shared
Wang, Liwei
1 / 6 shared
Pandita, Surya
1 / 3 shared
Mahendran, Ramani
1 / 2 shared
Kukureka, Stephen
1 / 4 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Bryce, G.
  • Fernando, Gerard
  • Gower, M.
  • Theobald, P.
  • Burns, Jonathan
  • Fernandes, E.
  • Malik, Shoaib
  • Machavaram, Venkata
  • Wang, Liwei
  • Pandita, Surya
  • Mahendran, Ramani
  • Kukureka, Stephen
OrganizationsLocationPeople

article

A novel fibre optic acoustic emission sensor

  • Bryce, G.
  • Fernando, Gerard
  • Chen, Rongsheng
  • Gower, M.
  • Theobald, P.
  • Burns, Jonathan
  • Fernandes, E.
  • Malik, Shoaib
Abstract

This paper presents the design, theory, characterisation and application of a novel fibre optic acoustic emission (AE) sensor. The sensor consists of a pair of optical fibres that are heated, fused and drawn to create a fused-tapered region that is sensitive to acoustic perturbations. The sensor is housed in a silica V-groove. The modelling of this fibre optic AE sensor is presented with a finite element analysis on the strain field based on the effect of the geometry within the sensing region. The characterisation of the sensor was carried out using a glass block with 160mm thickness as an acoustic medium. The applications of this sensor were demonstrated in three experiments. Firstly, the sensor was surface-mounted in carbon fibre reinforced composite samples and tested to failure under tensile loading. In the second experiment, the sensor was surface-mounted on double-cantilever Mode-I test specimens. The AE response from the sensor was correlated to the inferred modes of failure during the Mode-I test. In the third experiment, the sensor was surface-mounted onto the composite "blow-off" test samples. The feasibility of using the sensor to detect damage development in real-time was demonstrated.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • theory
  • experiment
  • glass
  • glass
  • composite
  • acoustic emission
  • finite element analysis