Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jeong, Y.

  • Google
  • 11
  • 33
  • 137

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2020Modelling-assisted description of anisotropic edge failure in magnesium sheet alloy under mixed-mode loading9citations
  • 2016Texture-based forming limit prediction for Mg sheet alloys ZE10 and AZ3133citations
  • 2012Biaxial Deformation Behaviour of AZ31 Magnesium Alloy: Crystal-Plasticity-Based Prediction and Experimental Validation73citations
  • 2010Bend-effects on Brillouin gain in large mode area fiber amplifiers with acoustic antiguidecitations
  • 2009Fiber design for high power fiber lasers12citations
  • 2007RGB generation by four-wave mixing in small-core holey fiberscitations
  • 2004Thulium-ytterbium co-doped fiber laser with 75W of output power at 2 microns5citations
  • 2004Thulium-ytterbium co-doped fiber laser with 75 W of output power at 2 μm5citations
  • 2004Recent advances in high power fiber laserscitations
  • 2004Thulium-ytterbium co-doped fiber laser with 32W of output power in the 2 micron wavelength rangecitations
  • 2003Fiber lasers: flexible and functional solutions for today and the futurecitations

Places of action

Chart of shared publication
Steglich, D.
3 / 30 shared
Andar, M. O.
1 / 2 shared
Kuwabara, T.
1 / 7 shared
Yoo, S.
2 / 25 shared
Codemard, C. A.
1 / 5 shared
Nilsson, Johan
6 / 26 shared
Sahu, Jayanta Kumar
5 / 64 shared
Mountfort, F.
1 / 1 shared
Boyland, A. J.
1 / 12 shared
Payne, D. N.
4 / 6 shared
Webb, A. S.
1 / 8 shared
Kalita, M. P.
1 / 10 shared
Maran, J.-N.
1 / 1 shared
Clarkson, W. A.
6 / 25 shared
Richardson, David J.
3 / 35 shared
Horak, Peter
1 / 23 shared
Poletti, Francesco
1 / 34 shared
Petrovich, Marco N.
1 / 6 shared
Dupriez, P.
4 / 6 shared
Shen, D. Y.
2 / 7 shared
Jackson, S. D.
2 / 3 shared
Sahu, Jayanta
1 / 2 shared
Nilsson, J.
2 / 5 shared
Sahu, J. K.
1 / 5 shared
Shen, D.
1 / 2 shared
Cooper, L. J.
1 / 2 shared
Codemard, C.
2 / 5 shared
Baek, S.
2 / 4 shared
Williams, R. B.
1 / 5 shared
Alegria, C.
2 / 2 shared
Soh, D. B. S.
2 / 2 shared
Philippov, V.
2 / 3 shared
Ibsen, M.
1 / 9 shared
Chart of publication period
2020
2016
2012
2010
2009
2007
2004
2003

Co-Authors (by relevance)

  • Steglich, D.
  • Andar, M. O.
  • Kuwabara, T.
  • Yoo, S.
  • Codemard, C. A.
  • Nilsson, Johan
  • Sahu, Jayanta Kumar
  • Mountfort, F.
  • Boyland, A. J.
  • Payne, D. N.
  • Webb, A. S.
  • Kalita, M. P.
  • Maran, J.-N.
  • Clarkson, W. A.
  • Richardson, David J.
  • Horak, Peter
  • Poletti, Francesco
  • Petrovich, Marco N.
  • Dupriez, P.
  • Shen, D. Y.
  • Jackson, S. D.
  • Sahu, Jayanta
  • Nilsson, J.
  • Sahu, J. K.
  • Shen, D.
  • Cooper, L. J.
  • Codemard, C.
  • Baek, S.
  • Williams, R. B.
  • Alegria, C.
  • Soh, D. B. S.
  • Philippov, V.
  • Ibsen, M.
OrganizationsLocationPeople

document

RGB generation by four-wave mixing in small-core holey fibers

  • Richardson, David J.
  • Horak, Peter
  • Payne, D. N.
  • Poletti, Francesco
  • Petrovich, Marco N.
  • Nilsson, Johan
  • Jeong, Y.
  • Dupriez, P.
Abstract

We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser by an efficient four-wave mixing process in submicron-sized cores of microstructured holey fibers. A master-oscillator power amplifier (MOPA) source based on Yb-doped fiber is employed to generate 80 ps pulses at 1060 nm wavelength with 32 MHz repetition rate, which are then frequency-doubled in an LBO crystal to generate up to 2 W average power of green light. The green pump is then carefully launched into secondary cores of the cladding of photonic bandgap fibers. These secondary cores with diameters of about 400 to 800 nm act as highly nonlinear waveguides. At the output, we observe strong red and blue sidebands which, together with the remaining green pump light, form a visible white light source of about 360 mW. The generating process is identified as four-wave mixing where phase matching is achieved by birefringence in the secondary cores which arises from non-symmetric deformation during the fiber fabrication. Numerical models of the fiber structure and of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of the white light source due to the damage threshold of silica fibers.

Topics
  • impedance spectroscopy
  • phase