People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Howdle, Steven M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A facile one step route that introduces functionality to polymer powders for laser sinteringcitations
- 2023Modification of linear polyethylenimine with supercritical CO2 : from fluorescent materials to covalent cross-linkscitations
- 2022Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2citations
- 2021Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplasticscitations
- 2020Starch/Poly(glycerol-adipate) Nanocomposites: A Novel Oral Drug Delivery Devicecitations
- 2020Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxidecitations
- 2019Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxidecitations
- 2019Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxidecitations
- 2014A high pressure cell for supercritical CO2 on-line chemical reactions studied with x-ray techniquescitations
- 2013Porous copolymers of ε-caprolactone as scaffolds for tissue engineeringcitations
- 2013Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solutioncitations
- 2009Continuous flow supercritical chemical fluid deposition of optoelectronic quality CdScitations
- 2009Electrodeposition of metals from supercritical fluidscitations
- 2009Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffoldscitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fiber substratescitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fibre substratescitations
Places of action
Organizations | Location | People |
---|
document
Surface enhanced Raman scattering using metal modified microstructured optical fiber substrates
Abstract
In this paper we report the fabrication of microstructured optical fibers (MOFs) metallic metamaterials using a bottom-up processing technique for surface enhanced Raman scattering (SERS) applications. The inner walls of the silica-based holey optical fber have been modified by depositing granular films of Ag nanoparticles from its organometallic precursor at high pressure condition. The resulting fibers demonstrate strong SERS effect when analyte molecules are infiltrated within the MOF due to large electromagnetic field enhancement and long interaction length. The chemically modified MOFs with 3D patterning represent an exciting platform technology for next generation SERS sensors and plasmonic in-fiber integrated devices.