People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macpherson, William N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2021Laser-manufactured glass microfluidic devices with embedded sensors
- 2017Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applicationscitations
- 2016Stainless steel component with compressed fiber Bragg grating for high temperature sensing applicationscitations
- 2015Measuring residual stresses in metallic components manufactured with fibre bragg gratings embedded by selective laser meltingcitations
- 2015SS316 structure fabricated by selective laser melting and integrated with strain isolated optical fiber high temperature sensorcitations
- 2015In-situ strain sensing with fiber optic sensors embedded into stainless steel 316citations
- 2014In-situ measurements with fibre bragg gratings embedded in stainless steelcitations
- 2013Embedding optical fibers into stainless steel using laser additive manufacturing
- 2013Embedded fibre optic sensors within additive layer manufactured componentscitations
- 2013Embedding metallic jacketed fused silica fibres into stainless steel using additive layer manufacturing technologycitations
- 2011Impact damage assessment by sensor signal analysis
- 2009Sensing properties of germanate and tellurite glass optical fibrescitations
- 2009Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in singleand multi-core mid-IR glass fibers
- 2009Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- And multi-core mid-IR glass fiberscitations
- 2008Three-core tellurite fiber with multiple rare earth emissioncitations
- 2008Mid-infrared gas sensing using a photonic bandgap fibercitations
- 2007Thermal sensitivity of tellurite and germanate optical fiberscitations
- 2007Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in aircitations
- 2007Thermal response of tellurite glass optical fibre
- 2007Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelengthcitations
- 2006Interferometric sensors for application in the bladder and the lower urinary tractcitations
- 2005Strain and temperature sensitivity of a single-mode polymer optical fibercitations
- 2005Strain and temperature sensitivity of a single-mode polymer optical fiber
- 2005Single-mode mid-IR guidance in a hollow-core photonic crystal fibercitations
- 2004Temperature dependence of the stress response of fibre Bragg gratingscitations
Places of action
Organizations | Location | People |
---|
document
Interferometric sensors for application in the bladder and the lower urinary tract
Abstract
<p>Improved patient comfort and the need for better quality diagnostic information provide the motivation for new sensor development for the urinary tract. Optical sensors based on single mode fibre optics offer unique advantages in terms of access and miniaturization. We report the design, manufacture and evaluation of a diaphragm based sensor to give better than 10 mbar pressure sensitivity. The diaphragm is formed from a medically compatible material and it's geometric parameters set to give the desired resolution. The rear surface of the diaphragm has a thin aluminum coating such that an interference signal can be detected between the light reflected from the diaphragm and the distal end of the fibre. A number of approaches have been investigated for the analysis of the signal from the sensor using broadband illumination where minimizing overall system cost has been a major driver as well as achieving the required performance. A comparison of the techniques is given and experimental data presented with validation of sensor deflection from a white light interferometer.</p>