Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Akelaitis, Andrew

  • Google
  • 1
  • 22
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Acentric lattice electro-optic materials by rational design2citations

Places of action

Chart of shared publication
Lingwood, Mark
1 / 1 shared
Snoeberger, Robert
1 / 1 shared
Buker, Nicholas
1 / 1 shared
Jang, Sei-Hum
1 / 10 shared
Firestone, Kimberly
1 / 1 shared
Robinson, Bruce
1 / 4 shared
Chen, Antao
1 / 3 shared
Dalton, Larry
1 / 4 shared
Liao, Yi
1 / 6 shared
Ried, Philip
1 / 1 shared
Amend, Joe
1 / 1 shared
Liu, Sen
1 / 2 shared
Rommel, Harry
1 / 1 shared
Sinness, Jessica
1 / 1 shared
Hammond, Scott
1 / 2 shared
Bhattacharjee, Sanchali
1 / 1 shared
Bhatambrekar, Nishant
1 / 1 shared
Steier, William
1 / 3 shared
Haller, Mamie
1 / 1 shared
Sullivan, Philip
1 / 3 shared
Eichinger, Bruce
1 / 3 shared
Bale, Denise
1 / 2 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Lingwood, Mark
  • Snoeberger, Robert
  • Buker, Nicholas
  • Jang, Sei-Hum
  • Firestone, Kimberly
  • Robinson, Bruce
  • Chen, Antao
  • Dalton, Larry
  • Liao, Yi
  • Ried, Philip
  • Amend, Joe
  • Liu, Sen
  • Rommel, Harry
  • Sinness, Jessica
  • Hammond, Scott
  • Bhattacharjee, Sanchali
  • Bhatambrekar, Nishant
  • Steier, William
  • Haller, Mamie
  • Sullivan, Philip
  • Eichinger, Bruce
  • Bale, Denise
OrganizationsLocationPeople

article

Acentric lattice electro-optic materials by rational design

  • Lingwood, Mark
  • Snoeberger, Robert
  • Buker, Nicholas
  • Jang, Sei-Hum
  • Firestone, Kimberly
  • Robinson, Bruce
  • Chen, Antao
  • Dalton, Larry
  • Liao, Yi
  • Ried, Philip
  • Amend, Joe
  • Liu, Sen
  • Rommel, Harry
  • Sinness, Jessica
  • Hammond, Scott
  • Bhattacharjee, Sanchali
  • Bhatambrekar, Nishant
  • Steier, William
  • Haller, Mamie
  • Sullivan, Philip
  • Eichinger, Bruce
  • Bale, Denise
  • Akelaitis, Andrew
Abstract

Quantum and statistical mechanical calculations have been used to guide the improvement of the macroscopic electro-optic activity of organic thin film materials to values greater than 300 pm/V at telecommunication wavelengths. Various quantum mechanical methods (Hartree-Fock, INDO, and density functional theory) have been benchmarked and shown to be reliable for estimating trends in molecular first hyperpolarizability, β, for simple variation of donor, bridge, and acceptor structures of charge-transfer (dipolar) chromophores. β values have been increased significantly over the past five years and quantum mechanical calculations suggest that they can be further significantly improved. Statistical mechanical calculations, including pseudo-atomistic Monte Carlo calculations, have guided the design of the super/supramolecular structures of chromophores so that they assemble, under the influence of electric field poling, into macroscopic lattices with high degrees of acentric order. Indeed, during the past year, chromophores doped into single-and multi-chromophore-containing dendrimer materials to form binary glasses have yielded thin films that exhibit electro-optic activities at telecommunication wavelengths of greater than 300 pm/V. Such materials may be viewed as intermediate between chromophore/polymer composites and crystalline organic chromophore materials. Theory suggests that further improvements of electro-optic activity are possible. Auxiliary properties of these materials, including optical loss, thermal and photochemical stability, and processability are discussed. Such organic electro-optic materials have been incorporated into silicon photonic circuitry for active wavelength division multiplexing, reconfigurable optical add/drop multiplexing, and high bandwidth optical rectification. A variety of all-organic devices, including stripline, cascaded prism, Fabry-Perot etalon, and ring microresonator devices, have been fabricated and evaluated.

Topics
  • density
  • polymer
  • theory
  • thin film
  • glass
  • glass
  • composite
  • Silicon
  • density functional theory
  • dendrimer