People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shen, Deyuan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
conferencepaper
Efficient holmium-doped solid-state lasers pumped by a Tm-doped silica fiber laser
Abstract
In-band pumping of Ho-doped solid-state lasers by a cladding-pumped Tm fiber laser is an attractive route to high output power and high pulse energy in the eyesafe two-micron spectral region. This approach combines the advantages of fiber lasers and crystal solid-state lasers with relative immunity from the effects of thermal loading, nonlinear loss processes (e.g. stimulated Brillouin scattering) and energy-transfer-upconversion. The use of a Tm-doped fiber laser as the pump source allows a great deal of flexibility, since the broad emission linewidth allows the wavelength to be tuned over a very wide range spanning the absorption lines of interest in Ho:YLF, Ho:YAG and many other Ho-doped crystals. In this paper, we report efficient operation of Ho:YAG and Ho:YLF lasers pumped by a tunable Tm-doped silica fiber laser. The lasing wavelength of the Tm-doped fibre laser could be tuned over 150nm from ~1860 to 2010nm with a relatively narrow linewidth (<0.5nm) and at output power levels in excess of 9W. Using a simple standing-wave cavity configuration, >6.4W of TEMoo output was obtained from a Ho:YAG laser at 2.1µm at the maximum incident pump power of 9.6W, corresponding to an optical-to-optical efficiency of 67%, and the slope efficiency with respect to incident pump power was 80%. By comparison, for a similar resonator design, 4.8W of output at 2.07µm was generated from a Ho:YLF laser at an incident pump power of 9.4W, corresponding to an optical conversion efficiency of 51%. Using a simple ring resonator geometry and an acousto-optic modulator to enforce unidirectional operation, we have obtained 3.7W of single-longitudinal-mode output from a Ho:YAG laser. The prospects for further improvement in performance and higher output power will be discussed.