Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wert, J. A.

  • Google
  • 3
  • 8
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2008Experimental determination of strain partitioning among individual grains in the bulk of an aluminium multicrystal11citations
  • 2004Measurement of the components of plastic displacement gradients in three dimensions3citations
  • 2004Measurement of the components of plastic displacement gradients in three dimensions3citations

Places of action

Chart of shared publication
Haldrup, K.
3 / 3 shared
Nielsen, S. F.
1 / 1 shared
Beckmann, F.
3 / 28 shared
Godiksen, R. B.
2 / 2 shared
Poulsen, Henning, F.
1 / 28 shared
Fæster, Søren
1 / 34 shared
Fæster Nielsen, Søren
1 / 2 shared
Poulsen, H. F.
1 / 5 shared
Chart of publication period
2008
2004

Co-Authors (by relevance)

  • Haldrup, K.
  • Nielsen, S. F.
  • Beckmann, F.
  • Godiksen, R. B.
  • Poulsen, Henning, F.
  • Fæster, Søren
  • Fæster Nielsen, Søren
  • Poulsen, H. F.
OrganizationsLocationPeople

document

Measurement of the components of plastic displacement gradients in three dimensions

  • Haldrup, K.
  • Wert, J. A.
  • Beckmann, F.
  • Godiksen, R. B.
  • Poulsen, Henning, F.
  • Fæster, Søren
Abstract

A method for non-destructive characterization of plastic deformation in bulk materials is presented. The method is based on X-ray absorption microtomography investigations using X-rays from a synchrotron source. The method can be applied to materials that contain marker particles, which have an atomic number significantly different from that of the matrix material. Data were acquired at the dedicated microtomography instrument at beamline BW2 at HASYLAB / DESY, for a cylindrical aluminium sample containing W particles with an average particle diameter of 7 mum. The minimum detectable size of the maker particles is 1-2 mum with the present spatial resolution at HASYLAB. The position (x,y,z) of all the detected marker particles within 1 mm(3) was determined as function of strain. The sample was deformed in stepwise compression along the axis of the cylinder. A tomographic scan was performed after each deformation step. After a series of image analysis steps to identify the centre of mass of individual particles and alignment of the successive tomographic reconstructions, the displacements of individual particles could be tracked as a function of external strain. The particle displacements are then used to identify local displacement gradient components, from which the local 3D plastic strain tensor can be determined. This allows us to map the strain components as a function of location inside a deforming metallic solid.

Topics
  • impedance spectroscopy
  • polymer
  • aluminium