People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Henning, F.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 20243D microstructural and strain evolution during the early stages of tensile deformationcitations
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2023Exploring 4D microstructural evolution in a heavily deformed ferritic alloycitations
- 2023Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurementscitations
- 2022High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructurescitations
- 2022Multiscale Exploration of Texture and Microstructure Development in Recrystallization Annealing of Heavily Deformed Ferritic Alloyscitations
- 2022Multiscale characterisation of strains in semicrystalline polymers
- 20224D microstructural evolution in a heavily deformed ferritic alloycitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2019Fast and quantitative 2D and 3D orientation mapping using Raman microscopycitations
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Ultra-low-angle boundary networks within recrystallizing grainscitations
- 2015Injection molded polymeric hard X-ray lensescitations
- 2014High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structurescitations
- 2012X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method
- 2011On the Use of Laguerre Tessellations for Representations of 3D Grain Structurescitations
- 2011Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffractioncitations
- 2011Three-Dimensional Orientation Mapping in the Transmission Electron Microscopecitations
- 2009Structured scintillators for X-ray imaging with micrometre resolutioncitations
- 2009New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imagingcitations
- 2009Measuring the elastic strain of individual grains in polycrystalline materials
- 2008A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillatorscitations
- 2004Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile samplecitations
- 2004Measurement of the components of plastic displacement gradients in three dimensionscitations
- 2004Metal Microstructures in Four Dimensions
- 20023DXRD microscopy - a comparison with neutron diffractioncitations
- 2000A high energy microscope for local strain measurements within bulk materials
Places of action
Organizations | Location | People |
---|
document
Measurement of the components of plastic displacement gradients in three dimensions
Abstract
A method for non-destructive characterization of plastic deformation in bulk materials is presented. The method is based on X-ray absorption microtomography investigations using X-rays from a synchrotron source. The method can be applied to materials that contain marker particles, which have an atomic number significantly different from that of the matrix material. Data were acquired at the dedicated microtomography instrument at beamline BW2 at HASYLAB / DESY, for a cylindrical aluminium sample containing W particles with an average particle diameter of 7 mum. The minimum detectable size of the maker particles is 1-2 mum with the present spatial resolution at HASYLAB. The position (x,y,z) of all the detected marker particles within 1 mm(3) was determined as function of strain. The sample was deformed in stepwise compression along the axis of the cylinder. A tomographic scan was performed after each deformation step. After a series of image analysis steps to identify the centre of mass of individual particles and alignment of the successive tomographic reconstructions, the displacements of individual particles could be tracked as a function of external strain. The particle displacements are then used to identify local displacement gradient components, from which the local 3D plastic strain tensor can be determined. This allows us to map the strain components as a function of location inside a deforming metallic solid.