Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hartner, Gisela D.

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Development of soft and hard x-ray optics for astronomy: progress report II and considerations on material properties for large-diameter segmented optics of future missions6citations

Places of action

Chart of shared publication
Mazzoleni, Franco
1 / 3 shared
Parodi, Giancarlo
1 / 8 shared
Citterio, Oberto
1 / 10 shared
Ghigo, Mauro
1 / 14 shared
Braeuninger, Heinrich W.
1 / 1 shared
Burkert, Wolfgang
1 / 1 shared
Pareschi, Giovanni
1 / 28 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Mazzoleni, Franco
  • Parodi, Giancarlo
  • Citterio, Oberto
  • Ghigo, Mauro
  • Braeuninger, Heinrich W.
  • Burkert, Wolfgang
  • Pareschi, Giovanni
OrganizationsLocationPeople

document

Development of soft and hard x-ray optics for astronomy: progress report II and considerations on material properties for large-diameter segmented optics of future missions

  • Mazzoleni, Franco
  • Parodi, Giancarlo
  • Citterio, Oberto
  • Hartner, Gisela D.
  • Ghigo, Mauro
  • Braeuninger, Heinrich W.
  • Burkert, Wolfgang
  • Pareschi, Giovanni
Abstract

In this paper we will review the activities devoted to the development of soft (0.1-10 keV) and hard (10-100 keV) X-ray optics for future astronomical missions that were carried out at the Brera Astronomical Observatory (OAB, Italy) during the last year. Concerning the soft X-ray optics, we are studying the approach based on the use of ceramic carriers for making monolithic Wolter I mirror shells of large diameter by epoxy replication. The ceramic materials investigated in our study are SiC and Alumina (Al<SUB>2</SUB>O<SUB>3</SUB>), respectively produced by Chemical Vapor Deposition and plasma spray. We fabricated a number of mirror shell prototypes ($PHI equals 60 cm) using carriers based on both materials. X-ray imaging tests performed at the PANTER X-ray facility (Germany) with a full illumination of the optics demonstrated that the mirror shells based on SiC show much better performances than in the case of Alumina. These results can be explained in terms of the thermal-mechanical parameters of the two materials, being in the case of SiC much more performing than for Alumina. Concerning the development of hard X-ray multilayer optics, we are exploring the approach based on Ni electroforming replication. In the last period of activity we in particular concentrated our work on the surface superpolishing methods for the mandrel to be used in the replication process, to be much improved with respect the case Au coated single layer mirrors for soft X-rays. Concerning the specific aspect of the mandrel superpolishing, the results that we obtained can be considered very good and it is possible to claim that we achieved the goal prefixed at the beginning of the development program. The last part of the paper is dedicated to theoretical considerations on large-size and low-weight optics based on segmented mirrors like e.g., those under study for the petals of the XEUS project. In particular, the expected imaging performances by segmented optics produced using different kinds of materials will be compared....

Topics
  • impedance spectroscopy
  • surface
  • ceramic
  • chemical vapor deposition