People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lub, Johan
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Nematic liquid crystalline polymer films for gas separationcitations
- 2005Self-assembled polymer films for controlled agent-driven motioncitations
- 2005Large amplitude light-induced motion in high elastic modulus polymer actuatorscitations
- 2005Large amplitude light-induced motion in high elastic modulus polymer actuatorscitations
- 2000Liquid crystal polymers and networks for display applicationscitations
Places of action
Organizations | Location | People |
---|
document
Liquid crystal polymers and networks for display applications
Abstract
<p>Photopolymerization of liquid-crystalline [LC] monomers produces polymer films with a spatial control over the molecular organization. A powerful tool for creating even more complex molecular architectures than by LC order alone is photo-induced diffusion during polymerization of these monomers. Photo-induced diffusion during polymerization of chiral-nematic monomers yields a cholesteric network in which the helical pitch gradually changes over the cross-section of the film. The polarization selective reflection band can thus be made much wider than those of single pitch materials and may expand the whole visible spectrum. Performing photo-induced diffusion on a length-scale of half the cholesteric pitch by using a liquid-crystalline photoinitiator yields a cholesteric network with a deformed helix. Helix deformation gives higher order reflections and a built-in optical retardation. When the deformed helix is combined with a pitch gradient over the film thickness, the built-in retardation can be used for wide-band cholesteric polarizers that directly generate linearly polarized light without an additional quarter-wave foil.</p>