Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tecza, Matthias

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000LUCIFER-MOS: a cryogenic multi-object infrared spectrograph for the LBT1citations

Places of action

Chart of shared publication
Hofmann, Reiner
1 / 1 shared
Thatte, Niranjan A.
1 / 1 shared
Eisenhauer, Frank
1 / 2 shared
Lehnert, Matthew
1 / 1 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Hofmann, Reiner
  • Thatte, Niranjan A.
  • Eisenhauer, Frank
  • Lehnert, Matthew
OrganizationsLocationPeople

document

LUCIFER-MOS: a cryogenic multi-object infrared spectrograph for the LBT

  • Hofmann, Reiner
  • Thatte, Niranjan A.
  • Tecza, Matthias
  • Eisenhauer, Frank
  • Lehnert, Matthew
Abstract

LUCIFER-MOS is a liquid nitrogen cooled near IR multi object spectrograph imaging 20 freely selectable sub-fields of about 2.2 inch by 1.8 inch and 6 by 4 image elements each on the entrance slit of the LUCIFER spectrograph. The image elements are re-arranged by 480 fused silica fibers of 50 micrometers core diameter and 100 micrometers total diameter with integrated, hexagonal lenslets of 0.6 mm width corresponding to a 0.3 inch field. The pre-optics magnifies the telescope image by a factor 3.3, thus adapting the telescope plate scale to the lenslet scale, and additionally providing a cold stop. The post-optics converts the f/3 fiber output beam to the f/15 beam accepted by the spectrograph. Each of the 20 6 by 4 fiber arrays together with its pre-optics is mounted in a spider arm which can be freely positioned within the 200 mm diameter field of view by a cryogenic robot. The robot performs three rotational movements to position the spider arms and is driven by cold stepper motors. The spider arms are locked in their positions by two permanent magnets each. Their magnetic field can be compensated by coils to unlock the arms and move them across the field of view....

Topics
  • impedance spectroscopy
  • Nitrogen