People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
García Núñez, Carlos
University of Glasgow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Giant piezoelectric effect induced by porosity in inclined ZnO thin filmscitations
- 2024Optical and structural properties of silicon nitride thin films deposited by plasma enhanced chemical vapor deposition for high reflectance optical mirrors
- 2024Giant Piezoelectric Effect Induced by Porosity in Inclined ZnO Thin Filmscitations
- 2021Glancing angle deposition of nanostructured ZnO films for ultrasonicscitations
- 2019Graphene–graphite polyurethane composite based high‐energy density flexible supercapacitorscitations
- 2018Electronic skin with energy autonomy and distributed neural data processing
- 2018A novel growth method to improve the quality of GaAs nanowires grown by Ga-assisted chemical beam epitaxycitations
- 2017Metal-assisted chemical etched Si nanowires for high-performance large area flexible electronics
- 2016Fabrication and characterization of multiband solar cells based on highly mismatched alloys
- 2015Contribution to the Development of Electronic Devices Based on Zn3N2 Thin Films, and ZnO and GaAs Nanowires
- 2013p-type CuO nanowire photodetectors
- 2013Sub-micron ZnO:N particles fabricated by low voltage electrical discharge lithography on Zn3N2 sputtered filmscitations
- 2013WO3 nanoparticle-functionalized nanowires for NOx sensing
- 2011Effect of the deposition temperature on the properties of Zn3N2 layers grown by rf magnetron sputtering
Places of action
Organizations | Location | People |
---|
document
Optical and structural properties of silicon nitride thin films deposited by plasma enhanced chemical vapor deposition for high reflectance optical mirrors
Abstract
Silicon nitride has been extensively studied as high-refractive index material for distributed Bragg’s reflectors planned to be used in the 3rd generation of Gravitational Wave Detectors working at cryogenic conditions. The absence of mechanical loss of this material at cryogenic conditions and its high refractive index, make this material be considered one of the best options for the mirrors of the GWDs. The optimization of composition and structure of SiNx thin films to refine optical (refractive index, and optical absorption), and morphology (surface roughness, defects) have been carried out mainly using ion beam sputtering (IBS), plasma enhanced chemical vapor deposition (PECVD) and low-pressure CVD (LPCVD). This work reports the characterization of both silicon nitride (SiNx) and a new alternative silicon oxynitride (SiOxNy) thin film, deposited by ammonia free based PECVD. We measured and analyzed the composition of the films, as well as their stress, surface roughness, and optical constants, including refractive index and extinction coefficient at λ = 1550 nm. Under our deposition conditions, superior properties in terms of high thickness uniformity – free of cracks – at wafer scale, low compressive stress (range of kPa), low surface roughness (<1 nm), and high refractive index 2.2 were achieved in both materials, with pure composition lacking contaminants.<br/>