Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Banerjee, P.

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Pulsed Laser Deposition using high-power Nd:YAG laser source operating at its first harmonicscitations

Places of action

Chart of shared publication
Chaluvadi, S. K.
1 / 4 shared
Mazzola, F.
1 / 14 shared
Orgiani, P.
1 / 12 shared
Rossi, G.
1 / 37 shared
Ciancio, R.
1 / 9 shared
Rajak, P.
1 / 5 shared
Chalil, S. Punathum
1 / 2 shared
Knez, Daniel
1 / 48 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Chaluvadi, S. K.
  • Mazzola, F.
  • Orgiani, P.
  • Rossi, G.
  • Ciancio, R.
  • Rajak, P.
  • Chalil, S. Punathum
  • Knez, Daniel
OrganizationsLocationPeople

document

Pulsed Laser Deposition using high-power Nd:YAG laser source operating at its first harmonics

  • Chaluvadi, S. K.
  • Banerjee, P.
  • Mazzola, F.
  • Orgiani, P.
  • Rossi, G.
  • Ciancio, R.
  • Rajak, P.
  • Chalil, S. Punathum
  • Knez, Daniel
Abstract

<p>We report on the progress of Pulsed Laser Deposition growth of thin films by using a high-power Nd:YAG laser source. We demonstrate that by using the fundamental wavelength at 1064 nm, the congruent ablation of a large number of materials can be successfully achieved. Even if the infra-red radiation of the fundamental harmonics of Nd:YAG lasers - corresponding to impinging photons with energy of about 1.16 eV - is unexpectedly proved to be also absorbed by insulating materials characterized by a large value of the band-gap (e.g. 3.0 eV for rutile TiO<sub>2</sub>). Combined investigation of structural properties by transmission electron microscopy and scanning electron microscopy provides evidence of the very high-quality thin films grown by Nd:YAG lasers with no trace of precipitates and droplets over a scale of tens of micrometers.</p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • thin film
  • transmission electron microscopy
  • precipitate
  • pulsed laser deposition