Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kang, Zhaoqing

  • Google
  • 1
  • 4
  • 0

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Unveiling design criteria of hollow fibers dielectric elastomer actuatorscitations

Places of action

Chart of shared publication
Jafarzadeh, Sina
1 / 6 shared
Skov, Anne Ladegaard
1 / 298 shared
Gökova, Maxim
1 / 1 shared
Yu, Liyun
1 / 71 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Jafarzadeh, Sina
  • Skov, Anne Ladegaard
  • Gökova, Maxim
  • Yu, Liyun
OrganizationsLocationPeople

document

Unveiling design criteria of hollow fibers dielectric elastomer actuators

  • Jafarzadeh, Sina
  • Skov, Anne Ladegaard
  • Gökova, Maxim
  • Kang, Zhaoqing
  • Yu, Liyun
Abstract

Dielectric elastomer actuators (DEAs) have been proclaimed as a transformative technology with applications spanning from robotics to biomedical devices. They are especially appealing because of their key characteristics, including low weight and lifetime. However, there are still challenges in tuning these actuators for desirable mechanical performance. Here, we examine the effects of geometry and material characteristics like inner diameter and Young's modulus on the performance of hollow fiber dielectric elastomer actuators (HFDEAs). These parameters were chosen because they are amenable to experimental validation and play a straightforward, yet significant, role in DEA performance. The model's parameters are based on experimental data, giving our computational simulations a solid foundation. The study takes into consideration the electro-mechanical coupling using finite element method (FEM) simulations in COMSOL Multiphysics. While the electrodes' attraction to one another results in length expansion, the results suggest that the larger surface charge density on the internal electrode compared to the inner one in hollow fiber DEAs results in radial expansion as well. This model also provides an estimation on the actuator holding force which is challenging to evaluate experimentally. According to preliminary results, careful parameter selection can indeed increase the holding force, thereby enhancing the actuator's overall effectiveness. In conclusion, this study provides an understanding of design parameters of HFDEA offering a comprehensive framework for HFDEA design by integrating both experimental and computational approaches.

Topics
  • density
  • impedance spectroscopy
  • surface
  • simulation
  • elastomer