People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bergmann, Alexander
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Comparative analysis of fabrication techniques for sensing windows on silicon nitride waveguide platforms
- 2024Millimeter Wave Metamaterial-based Strain Sensor Concept
- 2023Large-scale automated emission measurement of individual vehicles with point samplingcitations
- 2022Humidity Responsive Reflection Grating Made by Ultrafast Nanoimprinting of a Hydrogel Thin Filmcitations
- 2021Silicon Nitride Photonic Particle Detector-Experiments and Model Assessmentcitations
- 2020Vacuum-Assisted Selective Adhesive Imprinting for Photonic Packaging of Complex MOEMS Devicescitations
- 2020Fast optical humidity sensor based on nanostructured hydrogels
- 2019Vacuum-assisted selective adhesive imprinting for heterogeneous system integration of MOEMS devices
- 2019Fast Optical Humidity Sensor Based on Hydrogel Thin Film Expansion for Harsh Environmentcitations
- 2019State Estimation Approach of Lithium-Ion Batteries by Simplified Ultrasonic Time-of-Flight Measurementcitations
- 2018First Steps towards a Super-Compact in-situ Laser-Induced-Incandescence Sensor System
- 2017Modelling chemical degradation of ionomer in a polymer electrolyte fuel cell
- 2004Interpretation of small-angle scattering data of inhomogeneous ellipsoidscitations
- 2004Small Angle X-Ray Scattering with Cobalt Radiation for Nanostructure Characterization of Fe-Based Specimen
- 2000Evaluation of small-angle scattering data of charged particles using the generalized indirect Fourier transformation techniquecitations
Places of action
Organizations | Location | People |
---|
document
Comparative analysis of fabrication techniques for sensing windows on silicon nitride waveguide platforms
Abstract
<p>This study provides an in-depth evaluation of two fundamental techniques for fabricating sensing windows on silicon nitride platforms: a traditional etching strategy using reactive ion etching (RIE) combined with wet etching, and a lift-off-based process in which the top cladding material is deposited onto a suitable resist which is subsequently stripped of the distinct sensing waveguides. The analysis, based on a side-by-side comparison, meticulously examines the effectiveness of these methods. Key evaluation metrics include propagation and bending loss in the sensing windows, process robustness, and uniformity of critical dimensions and heights across the wafer. This will provide a comprehensive understanding of the strengths, weaknesses, and potential application limitations of each technique. An integral part of the study is the careful revision of the waveguide material stack to address specific challenges and applications. This precise tuning and adaptation of the material stack serve as a proxy for the demands likely to be encountered in real-world applications. The conservative etching technique has the advantage that it can be easily combined with subsequent facet etching processes for edge coupling approaches. Conversely, the lift-off resist based approach, despite its relative complexity and sensitivity to high-temperature deposition on the resist, reduces the negative impact of the process on surface roughness and sidewall angles. The knowledge gained from this research provides valuable guidance in the selection of appropriate fabrication techniques for specific silicon nitride sensor applications to increase the robustness of the processing steps for potential mass production stability.</p>