People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zeimpekis, Ioannis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition processcitations
- 2023Expanding the transmission window of visible-MWIR chalcogenide glasses by silicon nitride doping
- 2023Large-area synthesis of high electrical performance MoS 2 by a commercially scalable atomic layer deposition processcitations
- 2023Large-area synthesis of high electrical performance MoS 2 by a commercially scalable atomic layer deposition processcitations
- 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Tuning MoS2 metamaterial with elastic strain
- 2019Tuning MoS 2 metamaterial with elastic strain
- 2019High-throughput physical vapour deposition flexible thermoelectric generatorscitations
- 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing
- 2017Wafer scale pre-patterned ALD MoS 2 FETs
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Structural modification of Ga-La-S glass for a new family of chalcogenidescitations
- 2017Wafer scale pre-patterned ALD MoS2 FETs
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017Tuneable sputtered films by doping for wearable and flexible thermoelectrics
- 2017A lift-off method for wafer scale hetero-structuring of 2D materials
Places of action
Organizations | Location | People |
---|
document
Expanding the transmission window of visible-MWIR chalcogenide glasses by silicon nitride doping
Abstract
Gallium Lanthanum sulphur-oxide (GLSO) glass is an excellent candidate for a window/dome material ought to its wideband transmission window from visible to MWIR. The suitable optical transmission from 0.45-8 microns is supplemented by its superior thermal and mechanical properties to contemporary materials, such as Cleartran™ zinc sulphide. In this work, the properties of GLSO were enhanced by doping with small concentrations of silicon nitride (≤ 0.5 M%), which expanded the transmission window to encompass all the visible spectra. Nano-indentation demonstrated that the hardness and elastic modulus slightly improved. Overall, the improvements demonstrated here make this glass an even better solution when compared to the state-of-the-art for use in single-optic windows and domes.