People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Faraone, Lorenzo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2022Narrow bandgap HgCdTe technology for IR sensing & imaging focal plane arrayscitations
- 2019Interdiffusion Effects on Bandstructure in HgTe-CdTe Superlattices for VLWIR Imaging Applicationscitations
- 2018Effect of thermal annealing on stress relaxation and crystallisation of ion beam sputtered amorphous Si1-xGex thin filmscitations
- 2018GaSb-based II-VI semiconductors for application in next generation infrared detectors
- 2018MEMS-based Low SWaP solutions for multi/hyperspectral infrared sensing and imagingcitations
- 2018Optimization of Superlattice Barrier HgCdTe nBn Infrared Photodetectors Based on an NEGF Approachcitations
- 2018MBE growth of high quality HgCdSe on GaSb substratescitations
- 2017Large-Area MEMS Tunable Fabry-Perot Filters for Multi/Hyperspectral Infrared Imagingcitations
- 2016Investigation of Thermal Expansion Effects on Si-Based MEMS Structurescitations
- 2016Preparation and characterization of cerium substituted bismuth dysprosium iron garnets for magneto-optic applicationscitations
- 2016Interface trap density evaluation on bare silicon-on-insulator wafers using the quasi-static capacitance techniquecitations
- 2016Superlattice Barrier HgCdTe nBn Infrared Photodetectorscitations
- 2015Investigation of ICPECVD Silicon Nitride Films for HgCdTe Surface Passivationcitations
- 2014Characterization of mechanical, optical and structural properties of bismuth oxide thin films as a write-once medium for blue laser recordingcitations
- 2014Characterization of mechanical, optical and structural properties of bismuth oxide thin films as a write-once medium for blue laser recording
- 2014Investigation of cerium-substituted europium iron garnets deposited by biased target ion beam depositioncitations
- 2014GaSb: A new alternative substrate for epitaxial growth of HgCdTecitations
- 2009Elasto-plastic characterisation of low-temperature plasma-deposited silicon nitride thin films using nanoindentationcitations
- 2009Third-generation infrared photodetector arrayscitations
- 2007Dielectric thin films for MEMS-based optical sensorscitations
- 2007Poisson's Ratio of Low-Temperature PECVD Silicon Nitride Thin Filmscitations
- 2007Process condition dependence of mechanical and physical properties of silicon nitride thin filmscitations
- 2006Thermal Stability of PECVD SiN/sub x/ Filmscitations
- 2006Stress in low-temperature plasma enhanced chemical vapour deposited silicon nitride thin filmscitations
- 2005Characterization of Mechanical Properties of Silicon Nitride Thin Films for MEMS Devices by Nanoindentation
- 2005Determination of mechanical properties of silicon nitride thin films using nanoindentationcitations
- 2005Effects of deposition temperature on the mechanical and physical properties of silicon nitride thin filmscitations
- 2005Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filterscitations
- 2005Evaluation of Plasma Deposited Silicon Nitride Thin Flims for Microsystems Technologycitations
- 2004Laser-Beam-Induced Current Mapping of Spatial Nonuniformities in Molecular Beam Epitaxy As-Grown HgCdTecitations
- 2004Dark Currents in Long Wavelength Infrared HgCdTe Gated Photodiodescitations
Places of action
Organizations | Location | People |
---|
document
Narrow bandgap HgCdTe technology for IR sensing & imaging focal plane arrays
Abstract
<p>High performance infrared (IR) sensing and imaging systems require IR optoelectronic detectors that have a high signal-to-noise ratio (SNR) and a fast response time, and that can be readily hybridised to CMOS read-out integrated circuits (ROICs). From a device point of view, this translates to p-n junction photovoltaic detectors based on narrow bandgap semiconductors with a high quantum efficiency (signal) and low dark current (noise). These requirements limit the choice of possible semiconductors to those having an appropriate bandgap that matches the wavelength band of interest combined with a high optical absorption coefficient and a long minority carrier diffusion length, which corresponds to a large mobility-lifetime product for photogenerated minority carriers. Technological constraints and modern clean-room fabrication processes necessitate that IR detector technologies are generally based on thin-film narrow bandgap semiconductors that have been epitaxially grown on lattice-matched wider bandgap IR-transparent substrates. The basic semiconductor material properties have led to InGaAs (in the SWIR up to 1.7 microns), InSb (in the MWIR up to 5 microns), and HgCdTe (in the eSWIR, MWIR and LWIR wavelength bands) being the dominant IR detector technologies for high performance applications. In this paper, the current technological limitations of HgCdTe-based technologies will be discussed with a view towards developing future pathways for the development of next-generation IR imaging arrays having the features of larger imaging array format and smaller pixel pitch, higher pixel yield and operability, higher quantum efficiency (QE), higher operating temperature (HOT), and dramatically lower per-unit cost.</p>