Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grabulosa, Adrià

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022(3+1)D-printed adiabatic 1-to-N couplers3citations

Places of action

Chart of shared publication
Moughames, Johnny
1 / 9 shared
Porte, Xavier
1 / 1 shared
Brunner, Daniel
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Moughames, Johnny
  • Porte, Xavier
  • Brunner, Daniel
OrganizationsLocationPeople

conferencepaper

(3+1)D-printed adiabatic 1-to-N couplers

  • Grabulosa, Adrià
  • Moughames, Johnny
  • Porte, Xavier
  • Brunner, Daniel
Abstract

Low-loss single-mode optical coupling is a fundamental tool for most photonic networks, in both, classical and quantum settings. Adiabatic coupling can achieve highly efficient and broadband single-mode coupling using tapered waveguides and it is a widespread design in current 2D photonic integrated circuits technology. Optical power transfer between a tapered input and the inversely tapered output waveguides is achieved through evanescent coupling, and the optical mode leaks adiabatically from the input core through the cladding into<br&gtthe output waveguides cores. We have recently shown that for advantageous scaling of photonic networks, unlocking the third dimension for integration is essential. Two-photon polymerization (TPP) is a promising tool allowing dynamic and precise 3D-printing of submicrometric optical components. Here, we leverage rapid fabrication by constructing the entire 3D photonic chip combining one (OPP) and TPP with the (3+1)D flash-TPP lithography configuration, saving up to ≈ 90 % of the printing time compared to full TPP-fabrication. This additional photo-polymerization step provides auxiliary matrix stability for complex structures and sufficient refractive index contrast Δn ≈ 5×10−3 between core-cladding waveguides and propagation losses of 1.3 dB/mm for single-mode propagation. Overall, we confront different tapering strategies and reduce total losses below ∼ 0.2 dB by tailoring coupling and waveguides geometry. Furthermore, we demonstrate adiabatic broadband<br&gtfunctionality from 520 nm to 980 nm and adiabatic couplers with one input and up to 4 outputs. The scalability of output ports here addressed can only be achieved by using the three-spatial dimensions, being such adiabatic implementation impossible in 2D.

Topics
  • impedance spectroscopy
  • lithography