People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spiga, Daniele
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022ATHENA optics technology developmentcitations
- 2014Evaluation of the surface strength of glass plates shaped by hot slumping processcitations
- 2013Accurate integration of segmented x-ray optics using interfacing ribscitations
- 2010The optics system of the New Hard X-ray Mission: design and developmentcitations
- 2009Design and development of the optics system for the NHXM Hard X-ray and Polarimetric Missioncitations
- 2009Enabling deposition of hard x-ray reflective coatings as an industrial manufacturing processcitations
- 2005Characterization of a W/Si graded multilayer coated mirror shell (n. 326) preformed by Nickel electroforming (april 2004)
- 2004Hard X-ray multilayer coated astronomical mirrors by e-beam depositioncitations
- 2003The HEXIT (High Energy X-ray Imaging Telescope) balloon-borne mission
Places of action
Organizations | Location | People |
---|
document
ATHENA optics technology development
Abstract
<p>The next generation x-ray observatory ATHENA (advanced telescope for high energy astrophysics) requires an optics with unprecedented performance. It is the combination of low mass, large effective area and good angular resolution that is the challenge of the x-ray optics of such a mission. ATHENA is the second large class mission in the science programme of ESA, and is currently in a reformulation process, following a design-to-cost approach to meet the cost limit of an ESA L-class mission. The silicon pore optics (SPO) is the mission enabler being specifically developed for ATHENA, in a joint effort by industry, research institutions and ESA. All aspects of the optics are being addressed, from the mirror plates and their coatings, over the mirror modules and their assembly into the ATHENA telescope, to the facilities required to build and test the flight optics, demonstrating performance, robustness, and programmatic compliance. The SPO technology is currently being matured to the level required for the adoption of the ATHENA mission, i.e., the start of the mission implementation phase. The monocrystalline silicon material and pore structure of the SPO provide these optics with excellent thermal and mechanical properties. Benefiting from technology spin-in from the semiconductor industry, the equipment, processes, and materials used to produce the SPO are highly sophisticated and optimised.</p>