People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Micela, Giuseppina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Optimization of the Ariel primary mirrorcitations
- 2021Test of protected silver coating on aluminum samples of ARIEL main telescope mirror substrate materialcitations
- 2019Study and realization of a prototype of the primary off-axis 1-m diameter aluminium mirror for the ESA ARIEL missioncitations
- 2014Characterization of the Kepler-101 planetary system with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companioncitations
- 2014Characterization of the planetary system Kepler-101 with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companioncitations
Places of action
Organizations | Location | People |
---|
document
Optimization of the Ariel primary mirror
Abstract
The primary mirror of the Ariel space telescope (an ESA M class mission aimed at the study of exoplanets, scheduled for launch in 2029) is an elliptical off-axis paraboloid. Like the entire telescope, it is built of aluminum. As a massive part of the payload, as well as one of the most delicate components of the telescope, this mirror has to be accurately designed, in order to minimize its mass while not degrading its optical performances. This paper discusses the optimization study of the primary mirror of Ariel. Starting from its optical and geometrical specifications, we have run an iterative process based on FEA dynamic analyses, in order to compute the first "free-free" eigenfrequencies while varying the three fundamental parameters of the honeycomb structure of the mirror - the thickness of the ribs, the outer edge, and the reflecting surface. Later, the optimization routine has been improved by adding the honeycomb geometry as a variable parameter. As a result, the best configurations is identified as the ones giving the higher ratios of the first relevant eigenfrequency divided by the mass....