People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Février, Sébastien
University of Limoges
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Three octave visible to mid-infrared supercontinuum generation seeded by multimode silica fiber pumped at 1064 nmcitations
- 2022Towards a new understanding of optical poling efficiency in multimode fiberscitations
- 2014Double-clad large mode area Er-doped fiber for high-energy and high-peak power amplifiers
- 201375 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nmcitations
- 2013Double-clad large mode area Er-doped fiber for high-energy and high-peak power amplifiers
- 2010Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplificationcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Towards a new understanding of optical poling efficiency in multimode fibers
Abstract
International audience ; All-optical poling was demonstrated for the first time in 1986 in single mode fibers: such nonlinear optical process enabled the introduction of a second-order susceptibility (χ (2)) in a doped silica fiber. By simply using an intense laser source, alloptical poling, later theoretically described by Stolen and coworkers, permitted the generation of a second harmonic (SH) signal in an otherwise centrosymmetric doped material. More recently, similar experiments have been carried out by exploiting complex beam propagation in multimode fibers. In this work we reveal, for the first time to our knowledge, the 3D spatial distribution of a χ (2) nonlinearity written in a graded-index (GRIN) multimode (MM) fiber. In particular, the presence of a doubly-periodic distribution of χ (2) is unveiled by means of multiphoton microscopy. The shortest period (tens of micrometers) is due to the beating between the fundamental and the SH beams, and it is responsible for their quasiphase matching (QPM). Whereas the longest period (hundreds of micrometers) is associated with the periodic evolution, or self-imaging, of the power density of the MM beam along the GRIN MM fiber. The complex modal beating, leading to spatial self-cleaning of the fundamental beam, is thus printed inside the fiber core, and revealed by our measurements. We considered two fibers of similar composition and opto-geometric parameters, and we compared the evolution of the optical poling process with time. Despite the rather similar fiber characteristics, we observed a striking difference in the poling efficiency between the two fibers. Such observation led us to point out the importance of considering the complete fiber fabrication process (both the preform elaboration and the drawing steps) on the final structure and microstructure of optical fibers.