Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhattacharya, Bishakh

  • Google
  • 3
  • 7
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Wave propagation study in metamaterial sandwich structure with periodically inserted hourglass resonators1citations
  • 2022Voltage modulation of elastic properties of asymmetric hybrid lattice structure1citations
  • 2022Design and development of non-magnetic hierarchical actuator powered by shape memory alloy based bipennate muscle13citations

Places of action

Chart of shared publication
Gupta, Vivek
1 / 5 shared
Singh, Amanpreet
2 / 2 shared
Adhikari, Sondipon
1 / 9 shared
Mukhopadhyay, Tanmoy
1 / 43 shared
Harsha, A. Sri
1 / 1 shared
Chaurasiya, Kanhaiya Lal
1 / 1 shared
Sinha, Yashaswi
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Gupta, Vivek
  • Singh, Amanpreet
  • Adhikari, Sondipon
  • Mukhopadhyay, Tanmoy
  • Harsha, A. Sri
  • Chaurasiya, Kanhaiya Lal
  • Sinha, Yashaswi
OrganizationsLocationPeople

document

Voltage modulation of elastic properties of asymmetric hybrid lattice structure

  • Adhikari, Sondipon
  • Singh, Amanpreet
  • Bhattacharya, Bishakh
  • Mukhopadhyay, Tanmoy
Abstract

<p>2-D lattice structures have gained significant attention in the last few decades. Extensive analytical and experimental studies have been conducted to determine the elastic properties of the lattice structures. Further, the variation in the elastic properties of the passive lattice structures by changing various dimensional parameters and geometry have also been studied. However, once manufactured, it is impossible to vary the elastic properties of these lattice structures. A few studies have been conducted to understand the modulation of the elastic properties in symmetric hybrid lattice structures. This article proposes a geometrically asymmetric hybrid lattice structure having piezoelectric material on the opposite faces (top and bottom) of the consecutive inclined cell walls, respectively. The closed-form expressions have been derived by considering a bottom-up approach neglecting the axial deformation of the cell walls. Young's modulus has emerged to be a function of externally applied voltage, warranting control of the elastic properties of the structure even after manufacturing. In contrast, Poisson's ratio is independent of externally applied voltage. The transition from negative to positive values for Young's modulus has also been observed at specific cell angle values and externally applied voltage to stress ratio. This study intends to provide the basic framework for voltage-dependent elastic properties in asymmetric lattice structures for potential use in various futuristic multi-functional structural systems and devices across different length scales.</p>

Topics
  • impedance spectroscopy
  • piezoelectric material
  • Poisson's ratio