Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tao, Nan

  • Google
  • 5
  • 3
  • 61

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Shearography With Thermal Loading For Defect Detection Of Small Defects In Cfrp Compositescitations
  • 2023Towards safe shearography inspection of thick composites with controlled surface temperature heating11citations
  • 2022Shearography non-destructive testing of thick GFRP laminates46citations
  • 2022Shearography non-destructive testing of a composite ship hull section subjected to multiple impactscitations
  • 2021Spatially modulated thermal excitations for shearography non-destructive inspection of thick composites4citations

Places of action

Chart of shared publication
Anisimov, Andrei
5 / 8 shared
Groves, Roger
5 / 29 shared
Elenbaas, Marcel
1 / 1 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Anisimov, Andrei
  • Groves, Roger
  • Elenbaas, Marcel
OrganizationsLocationPeople

conferencepaper

Spatially modulated thermal excitations for shearography non-destructive inspection of thick composites

  • Anisimov, Andrei
  • Groves, Roger
  • Tao, Nan
Abstract

With the increasing application of thick composites in marine, wind energy and aerospace industries, the inspection of thick composites becomes more and more challenging when considering the variety of thick structures (e.g., laminate, sandwich, honeycomb structures). Shearography is a full-field and non-contact optical non-destructive testing (NDT) method which is normally used to inspect composite laminates up to 10 mm while for the thick composite laminates (e.g., with the thickness of more than 50 mm), its performance is not clear yet. In shearography NDT, a defect-induced anomaly is revealed from fringe or phase maps obtained by comparing two states of deformation of the specimen to be inspected. Thermal loading is widely used to deform the specimen due to its advantages of convenience for on-site inspection and cost-effectiveness. The objective of this study is to improve the defect detection capabilities of shearography when used to inspect thick composites. For that, spatial modulated thermal excitations are investigated. A thick composite model has been built in Abaqus to assist the shearography inspection. Various kinds of spatially modulated heating including local heating and global heating are explored for thick composite inspection with shearography in order to evaluate the corresponding efficacies in defect detection. We will present both experimental and numerical results on spatial modulated thermal loading. Defect-induced shearographic responses subjected to local and global thermal excitations will be discussed in this paper, including the influence of short-time heating and long-time heating on thick composite inspection. Current results indicate that long-time heating is more favorable when inspecting deep defects in thick composites, and with local heating it is possible to increase the defect-induced signal when compared with global heating. ; Structural Integrity & Composites

Topics
  • impedance spectroscopy
  • phase
  • composite
  • defect