People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Groves, Roger
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Shearography With Thermal Loading For Defect Detection Of Small Defects In Cfrp Composites
- 2024Towards hydrogen fueled aircraft
- 2024Advancing Hydrogen Sensing for Sustainable Aviationcitations
- 2023Towards safe shearography inspection of thick composites with controlled surface temperature heatingcitations
- 2022Shearography non-destructive testing of thick GFRP laminatescitations
- 2022Shearography non-destructive testing of a composite ship hull section subjected to multiple impacts
- 2021Optical Material Characterisation of Prepreg CFRP for Improved Composite Inspectioncitations
- 2021Spatially modulated thermal excitations for shearography non-destructive inspection of thick compositescitations
- 2021Modeling and imaging of ultrasonic array inspection of side drilled holes in layered anisotropic mediacitations
- 2020Simulation of ultrasonic beam propagation from phased arrays in anisotropic media using linearly phased multi-Gaussian beamscitations
- 2020A gaussian beam based recursive stiffness matrix model to simulate ultrasonic array signals from multi-layered mediacitations
- 2020Simultaneous temperature-strain measurement in a thin composite panel with embedded tilted Fibre Bragg Grating sensors (PPT)
- 2020Algorithm assessment for layup defect segmentation from laser line scan sensor based image datacitations
- 2019Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structurescitations
- 2018Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite jointscitations
- 2018Incorporating Inductive Bias into Deep Learning
- 2018Non-Destructive Testing for Detection, Localization and Quantification of Damage on Composite Structures for Composite Repair Applications
- 2018Full-scale testing of an ultrasonic guided wave based structural health monitoring system for a thermoplastic composite aircraft primary structure
- 2018EXTREME shearographycitations
- 20183.12 Inspection and Monitoring of Composite Aircraft Structurescitations
- 2017Online preventive non-destructive evaluation for automated fibre placement
- 2017Modelling of ultrasonic beam propagation from an array through transversely isotropic fibre reinforced composites using Multi Gaussian beams
- 2017Epoxy-hBN nanocompositescitations
- 2017Advanced signal processing techniques for fibre-optic structural health monitoring
- 2016Online Preventative Non-Destructive Evaluation in Automated Fibre Placement
- 2016Thermal strains in heated Fiber Metal Laminates
- 2016Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imagingcitations
- 2016Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
- 2016Perspectives on Structural Health Monitoring of Composite Civil Aircraft
Places of action
Organizations | Location | People |
---|
conferencepaper
Spatially modulated thermal excitations for shearography non-destructive inspection of thick composites
Abstract
With the increasing application of thick composites in marine, wind energy and aerospace industries, the inspection of thick composites becomes more and more challenging when considering the variety of thick structures (e.g., laminate, sandwich, honeycomb structures). Shearography is a full-field and non-contact optical non-destructive testing (NDT) method which is normally used to inspect composite laminates up to 10 mm while for the thick composite laminates (e.g., with the thickness of more than 50 mm), its performance is not clear yet. In shearography NDT, a defect-induced anomaly is revealed from fringe or phase maps obtained by comparing two states of deformation of the specimen to be inspected. Thermal loading is widely used to deform the specimen due to its advantages of convenience for on-site inspection and cost-effectiveness. The objective of this study is to improve the defect detection capabilities of shearography when used to inspect thick composites. For that, spatial modulated thermal excitations are investigated. A thick composite model has been built in Abaqus to assist the shearography inspection. Various kinds of spatially modulated heating including local heating and global heating are explored for thick composite inspection with shearography in order to evaluate the corresponding efficacies in defect detection. We will present both experimental and numerical results on spatial modulated thermal loading. Defect-induced shearographic responses subjected to local and global thermal excitations will be discussed in this paper, including the influence of short-time heating and long-time heating on thick composite inspection. Current results indicate that long-time heating is more favorable when inspecting deep defects in thick composites, and with local heating it is possible to increase the defect-induced signal when compared with global heating. ; Structural Integrity & Composites