Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ehrenhofer, Adrian

  • Google
  • 4
  • 5
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Window-opener as an example for environment measurement and combined actuation of smart hydrogels4citations
  • 2018Modellierung und Simulation des Verhaltens von durchströmten schaltbaren Membranencitations
  • 2017Hydrogels for engineering8citations
  • 2016Simulation of controllable permeation in PNIPAAm coated membranes9citations

Places of action

Chart of shared publication
Wallmersperger, Thomas
3 / 11 shared
Filippatos, Angelos
1 / 36 shared
Elstner, Martin
1 / 1 shared
Gude, Mike
1 / 775 shared
Richter, Andreas
1 / 12 shared
Chart of publication period
2021
2018
2017
2016

Co-Authors (by relevance)

  • Wallmersperger, Thomas
  • Filippatos, Angelos
  • Elstner, Martin
  • Gude, Mike
  • Richter, Andreas
OrganizationsLocationPeople

conferencepaper

Window-opener as an example for environment measurement and combined actuation of smart hydrogels

  • Wallmersperger, Thomas
  • Filippatos, Angelos
  • Elstner, Martin
  • Gude, Mike
  • Ehrenhofer, Adrian
Abstract

An environment is defined by a set of field values, such as temperature, electro-magnetic field, light intensity, air humidity and air composition. Smart materials, such as hydrogels, are able to react to these kinds of stimuli. The spatial and time development of environmental values is governed by transport equations. Hence the reaction, i.e. actuation or sensing, of the smart material can be described based on the same assumptions. The displacement, here swelling and deswelling, of the material depends on the combination of the environmental parameters. Smart materials are called multi-sensitive, when more than one parameter is purposely used (i) to manipulate the material, i.e. as an actuator or (ii) to measure the quantities, i.e. as a (multi-)sensor. However, the material can also perform (iii) the objective of a logic processing unit in addition to (i) and (ii). In the current work, we present a device that realizes this concept: An automatic window opener that senses environmental parameters (light-level and air temperature) and reacts accordingly. The hydrogel material that is included in the simplistic device simultaneously acts as sensor, logic processing unit and actuator.

Topics
  • impedance spectroscopy
  • simulation