Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jeong, Seonghyeon

  • Google
  • 5
  • 6
  • 28

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Recycling of dielectric electroactive materials enabled through thermoplastic PDMS7citations
  • 2021Autonomously self-healing dielectric elastomer actuators from thermoplastic polydimethylsiloxane elastomer1citations
  • 2021Low friction thermoplastic polyurethane coatings imparted by surface segregation of amphiphilic block copolymers20citations
  • 2020Soft thermoplastic silicone elastomer via supramolecular chemistrycitations
  • 2018An overview of polymer-based conformance treatment from past to presentcitations

Places of action

Chart of shared publication
Daugaard, Anders Egede
3 / 80 shared
Skov, Anne Ladegaard
4 / 298 shared
Røn, Troels
1 / 1 shared
Jankova, Katja Jankova
1 / 10 shared
Javakhishvili, Irakli
1 / 11 shared
Lee, Seunghwan
1 / 4 shared
Chart of publication period
2022
2021
2020
2018

Co-Authors (by relevance)

  • Daugaard, Anders Egede
  • Skov, Anne Ladegaard
  • Røn, Troels
  • Jankova, Katja Jankova
  • Javakhishvili, Irakli
  • Lee, Seunghwan
OrganizationsLocationPeople

document

Autonomously self-healing dielectric elastomer actuators from thermoplastic polydimethylsiloxane elastomer

  • Daugaard, Anders Egede
  • Jeong, Seonghyeon
  • Skov, Anne Ladegaard
Abstract

Dielectric elastomer actuators (DEAs) are usually operated at high voltage to induce sufficient electric pressure between two compliant electrodes sandwiching the dielectric elastomer. However, a harsh environment (e.g. humid environment combined with high voltage) often induces electrical breakdown (EB) of the DEAs, which results in pinhole formation or even tearing of the device, followed by macroscopic failure. Therefore, it is ideal for DEAs to be self-healing to extend robustness and lifetime, such as observed for biological muscles, which can be healed from injuries by inherent biological processes. Herein, we prepared a soft (Young’s modulus: 187 kPa) polydimethylsiloxane (PDMS) thermoplastic elastomer (TPE) to demonstrate an autonomous self-healing ability. The system exploits hydrogen bonding (H-bonding) in two types of transient cross-linkers: urea group serves as a sacrificial bond under loading and ureidopyrimidone (UPy) serves as a strong, load-carrying crosslinker. The PDMS TPE shows a crossover of the elastic moduli at 119 °C and highly frequency dependent elastic modulus. The DEA is prepared with compliant, corrugated silver electrodes on both sides of a corrugated PDMS TPE film. A maximum actuation strain (6.8 % in longitudinal direction) is achieved at 18.8 V μm-1. A further increase in potential does not increase the actuation strain, but EBs are observed on the electrodes and the actuation is maintained without any detrimental effects to the film despite the previous breakdown. The EBs do not form permanent pinholes, nor do they cause tearing of films. Instead, only the removal of the silver electrode is observed, which is the so-called self-clearing effect commonly observed for metallic electrodes. In combination with the self-clearing effect, the heat generated by the EBs allows the PDMS TPE to soften. The polymer molecules are then capable of flowing into the voids that were created at the initiation of the EBs. As a result, further propagation of the EB is hindered, and instead, an instantaneous and autonomous self-healing of the DEA is observed.

Topics
  • impedance spectroscopy
  • silver
  • Hydrogen
  • void
  • thermoplastic
  • elastomer
  • thermoplastic elastomer