Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jha, Amit Kumar

  • Google
  • 2
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Demonstration of magnetic and light-controlled actuation of a photomagnetically actuated deformable mirror for wavefront control1citations
  • 2020Modeling light-controlled actuation of flexible magnetic composite structures using the finite element method (FEM)1citations

Places of action

Chart of shared publication
Omenetto, Fiorenzo G.
2 / 2 shared
Douglas, Ewan S.
2 / 2 shared
Fucetola, Corey
2 / 2 shared
Li, Meng
2 / 14 shared
Maier, Erin R.
1 / 1 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Omenetto, Fiorenzo G.
  • Douglas, Ewan S.
  • Fucetola, Corey
  • Li, Meng
  • Maier, Erin R.
OrganizationsLocationPeople

document

Modeling light-controlled actuation of flexible magnetic composite structures using the finite element method (FEM)

  • Maier, Erin R.
  • Omenetto, Fiorenzo G.
  • Douglas, Ewan S.
  • Fucetola, Corey
  • Li, Meng
  • Jha, Amit Kumar
Abstract

Photoactive materials hold great promise for a variety of applications. We present a finite element model of light-controlled flexible magnetic composite structure composed of 33.3% Chromium dioxide (CrO<SUB>2</SUB>) and 66.7% Polydimethylsiloxane (PDMS) by weight. The structure has a dimension of 8 mm × 2 mm × 100 μm and has been previously experimentally studied. Due to the low Curie temperature, the structure acts as an actuator, shows significant deflection under the external magnetic field and relaxation due to laser heating. Thermal and magnetic deflection analysis has been performed using the FEM model. The simulation results show a maximum structural deflection of 6.08 mm (76% of the length of the structure) when subjected to 30 mT magnetic flux density and 160 mW laser power at 303 K (room temperature). We will present the results of the simulation model and comparison to experimental data reproducing the previously observed motion of the (CrO<SUB>2</SUB>+PDMS). This model will enable future fracture and fatigue analysis as well as extension to new photoactive geometries....

Topics
  • density
  • chromium
  • simulation
  • fatigue
  • composite
  • Curie temperature