People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Coclite, Anna Maria
University of Bari Aldo Moro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Icephobic Gradient Polymer Coatings Coupled with Electromechanical De-icing Systems: A Promising Ice Repellent Hybrid Systemcitations
- 2024Functionalizing Surfaces by Physical Vapor Deposition To Measure the Degree of Nanoscale Contact Using FRET
- 2023Capillary-Driven Water Transport by Contrast Wettability-Based Durable Surfacescitations
- 2023Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniquescitations
- 2023Chemical vapor deposition of carbohydrate-based polymerscitations
- 2022Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”citations
- 2022Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”citations
- 2022Shedding light on the initial growth of ZnO during plasma-enhanced atomic layer deposition on vapor-deposited polymer thin filmscitations
- 2022Measurements of Temperature and Humidity Responsive Swelling of Thin Hydrogel Films by Interferometry in an Environmental Chambercitations
- 2022Humidity Responsive Reflection Grating Made by Ultrafast Nanoimprinting of a Hydrogel Thin Filmcitations
- 2021Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphenecitations
- 2021Oxidative Chemical Vapor Deposition of Conducting Polymer Films on Nanostructured Surfaces for Piezoresistive Sensor Applicationscitations
- 2020Fast optical humidity sensor based on nanostructured hydrogels
- 2020Conformal Coating of Powder by Initiated Chemical Vapor Deposition on Vibrating Substratecitations
- 2020Solvent-Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridyl-Triazolate Frameworkcitations
- 2020Initiated Chemical Vapor Deposition of Crosslinked Organic Coatings for Controlling Gentamicin Deliverycitations
- 2019Fast Optical Humidity Sensor Based on Hydrogel Thin Film Expansion for Harsh Environmentcitations
- 2017Simple method for the quantitative analysis of thin copolymer films on substrates by infrared spectroscopy using direct calibrationcitations
- 2016Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Fast optical humidity sensor based on nanostructured hydrogels
Abstract
The aim of the current work is to improve the response time of an optical readout based humidity sensor. Therefore, we present the application of nanoimprint lithography (NIL) on thin films which are deposited by initiated chemical vapor deposition (iCVD). Hydrogels are polymeric networks with the ability to swell after certain physical conditions change, which makes them very useful as sensing layers for optical devices. In the first step we used iCVD to deposit a humidity responsive hydrogel (here: pHEMA) as a planar thin film on sapphire substrates. To increase the effective surface area, we tried for the first time NIL on our hydrogel thin films with promising results: First, characterization with a SEM showed that NIL allows the design of large homogeneous areas of nanostructures without damaging the sensitive hydrogel thin film and having a great stability at ambient conditions. Second, NIL offers the benefit to build different geometries and sizes of nanostructures based on the requested application. For our first test we selected a simple line array structure, combined with an optical detection method as sensor principle. By choosing a specific structure to wavelength ratio the imprinted nanostructures act as a diffraction grating enabling a fast response time by increasing the effective sensing area. Since in our application the hydrogel works as the sensing element, we observed a humidity dependence behavior by measuring the intensity of the first order diffraction peak. Finally, the response time was a lot faster by using optical detection methods than commercial humidity sensors.