Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ackstaller, Thomas

  • Google
  • 2
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Stereolithographic printed polymers on ceramic for 3D-opto-MID1citations
  • 2019Combination of Thick-Film Hybrid Technology and Polymer Additive Manufacturing for High-Performance Mechatronic Integrated Devices4citations

Places of action

Chart of shared publication
Lorenz, Lukas
2 / 2 shared
Bock, Karlheinz
2 / 43 shared
Nieweglowski, Krzysztof
1 / 10 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Lorenz, Lukas
  • Bock, Karlheinz
  • Nieweglowski, Krzysztof
OrganizationsLocationPeople

document

Stereolithographic printed polymers on ceramic for 3D-opto-MID

  • Lorenz, Lukas
  • Ackstaller, Thomas
  • Bock, Karlheinz
Abstract

<p>The combination of hybrid interconnection technology on ceramic as a carrier for the RF-electronics with excellent heat management and stereolithographic printing for 3D structures is a novel approach to achieve 3D-Opto-MID parts and, furthermore, to include mechanical properties. By directly printing polymers onto aluminum-oxide substrate (including an electrical circuit), brings together the advantages of both technologies. Using additive manufacturing makes this process suitable for small- to mid-scale productions with a very high design freedom. To analyze the adhesion between Al2O3 substrate and printed polymers, we compare six different resins according to the minimal structure length and the adhesion on the substrate. A longer exposure time of the first layer (burn-in time) leads to sufficient adhesion of the print on the ceramic substrate. To realize smaller adherent structures, longer burn-in times are needed. In a shear test, the forces to lift off the prints from the substrate are measured. The experiments reveal correlation between shear force and contact area with little variance. Based on this evaluation, choosing materials for future applications is easier and design rules can be determined. Furthermore, we present the application of flexible optical waveguides onto the 3D substrate (which will be directly printed in the future), as well as the passive alignment of laser and photodiode in this article. In a first test, we were able to prove the functionality of the 3D-Opto-MID package by launching the waveguide with the applied laser and measuring the current at the photodiode.</p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • aluminium
  • shear test
  • ceramic
  • resin
  • additive manufacturing