People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Camacho Rosales, Angeles
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
conferencepaper
Optical fibers fabricated from 3D printed silica preforms
Abstract
The increasing demand for novel fiber design has brought major challenges with the current fabrication methods. Additive manufacturing is an innovative fabrication process that has been attracting attention to the optical fiber community. 3D printed porous bodies from commercial silica powder were produced based on selective laser sintering (SLS). Complex structures such as antiresonant fiber (ARF), photonic crystal fiber (PCF) and multicore fiber (MCF) preforms were produced by this method. Additionally, a multi-material fiber with a silica cladding and a GeO<sub>2</sub>-SiO<sub>2</sub> core was fabricated from a 3D printed preform. The optical and physical properties of the fabricated 3D printed structures were reported.