People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stavrevski, Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Micron scale thermometry using lanthanide doped tellurite glass
Abstract
<p>Nanoscale thermometry of biological systems offers new insights into cell metabolism at a sub-cellular scale. Currently, there is no way in which we can achieve high resolution temperature sensing on these systems without the use of foreign materials such as biological markers. Using rare-earth doped tellurite glass as a platform for thermometry, we report micron scale scale temperature sensing via confocal scanning microscopy. We demonstrate this technique by monitoring the cooling from a water droplet and report a net temperature change of 7.04K with a sensitivity of 0.12K. These results pave the way for "marker free" micron scale temperature sensing in biological systems.</p>