Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Terraneo, Marco

  • Google
  • 1
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Study and realization of a prototype of the primary off-axis 1-m diameter aluminium mirror for the ESA ARIEL mission2citations

Places of action

Chart of shared publication
Da Deppo, Vania
1 / 2 shared
Micela, Giuseppina
1 / 5 shared
Morgante, Gianluca
1 / 2 shared
Pace, Emanuele
1 / 3 shared
Bianucci, Giovanni
1 / 2 shared
Focardi, Mauro
1 / 2 shared
Zocchi, Fabio
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Da Deppo, Vania
  • Micela, Giuseppina
  • Morgante, Gianluca
  • Pace, Emanuele
  • Bianucci, Giovanni
  • Focardi, Mauro
  • Zocchi, Fabio
OrganizationsLocationPeople

document

Study and realization of a prototype of the primary off-axis 1-m diameter aluminium mirror for the ESA ARIEL mission

  • Da Deppo, Vania
  • Terraneo, Marco
  • Micela, Giuseppina
  • Morgante, Gianluca
  • Pace, Emanuele
  • Bianucci, Giovanni
  • Focardi, Mauro
  • Zocchi, Fabio
Abstract

ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) has been selected by ESA as the next mediumclass science mission (M4) to be launched in 2028. The aim of the ARIEL mission is to study the atmospheres of a selected sample of exoplanets. The payload is based on a 1-m class telescope ahead of a suite of instruments: two spectrometric channels covering the band 1.95 to 7.80 μm and four photometric channels working in the range 0.5 to 1.9 μm. The production of the primary mirror (M1) is one of the main technical challenges of the mission. A trade-off on the material to be used for manufacturing the 1-m diameter M1 was carried out, and aluminium alloys have been selected as the baseline materials both for the telescope mirrors and structure. Aluminium alloys have demonstrated excellent performances both for IR small size mirrors and structural components, but the manufacturing and thermo-mechanical stability of large metallic optics still have to be demonstrated especially at cryogenic temperatures. The ARIEL telescope will be realized on-ground (1 g and room temperature), but it shall operate in space at about 50 K. For this reason a detailed tolerance analysis was performed to assess the telescope expected performance. M1 is an off-axis section of a paraboloidal mirror and will be machined from a single blank as a stand-alone part. To prove the feasibility of such a large aluminium mirror, a pathfinder mirror program has been started. The prototype has been realized and tested, so far at room temperature, by Media Lario S.r.l.. Cryogenic testing of the prototype will be performed during Phase B1....

Topics
  • impedance spectroscopy
  • phase
  • aluminium
  • aluminium alloy