People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vuyst, Tom De
University of Hertfordshire
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021High-Velocity Impacts of Pyrophoric Alloy Fragments on Thin Armour Steel Platescitations
- 2019A numerical study on the influence of internal corrugated reinforcements on the biaxial bending collapse of thin-walled beamscitations
- 2019On high velocity impact on carbon fibre reinforced polymers
- 2018Modelling of shock waves in fcc and bcc metals using a combined continuum and dislocation kinetic approachcitations
- 2012Progressive damage in woven CFRPP in presence of shock waves
- 2007Material flow around a friction stir welding toolcitations
- 2005Finite element modelling of friction stir welding of aluminium alloy plates-inverse analysis using a genetic algorithmcitations
- 2002Effects of orientation on the strength of the aluminum alloy 7010-T6 during shock loadingcitations
Places of action
Organizations | Location | People |
---|
document
On high velocity impact on carbon fibre reinforced polymers
Abstract
The gaining popularity of composites and their typical applications (e.g. aerospace, energy and defence) are driving the requirements for the dynamic characterisation of these materials. Carbon fibre reinforced polymers (CFRP), which are the main concern in this work, are composed of stiff, brittle fibres encased in epoxy resin. Their microstructure results in pronounced anisotropy which makes their characterisation challenging even in basic quasi-static mechanical tests. It must be pointed out that the anisotropy and heterogeneity lead to a complexity in behaviour of these materials including a number of failure mechanisms in the material that are activated by different loading conditions. Despite extensive research in the last three decades, a widely accepted and reliable failure theory for composites does not exist [1][2]. The work in progress, presented here, is related to development of the damage part of a constitutive model intended for modelling of high velocity impact on CFRP aerospace structures. The model is based on spectral decomposition of the material stiffness tensor and strain energy. The model development was supported by extensive mesoscale modelling of the effects of physical damage on the damage parameters related to the material deformation eigenmodes. This is done as part of an integrated effort to produce tools for modelling of high velocity impact on composites in the European project EXTREME∗∗.