People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mazurek, Piotr Stanislaw
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Antimicrobial silicone skin adhesives facilitated by controlled octenidine release from glycerol compartmentscitations
- 2022Multiscale characterisation of strains in semicrystalline polymers
- 2020Glycerol-silicone adhesives with excellent fluid handling and mechanical properties for advanced wound care applicationscitations
- 2019Glycerol-silicone foams - Tunable 3-phase elastomeric porous materialscitations
- 2019Silicone elastomer map: design the ideal elastomercitations
- 2019Hybrid Glycerol-Silicone Adhesives with Excellent Moisture Handling Properties for Advanced Wound Care Applications
- 2019Silicone elastomer map: Design the ideal elastomer
- 2019Design of reliable silicone elastomers for dielectric elastomers and stretchable electronicscitations
- 2019Designing reliable silicone elastomers for high temperature applications
- 2019Glycerol-silicone elastomers as active matrices with controllable release profiles
- 2019Advanced wound care adhesives with improved moisture handling capabilities
- 2019Development of Novel , Skin Friendly Glycerol Silicone Hybrid Adhesives
- 2018Designing reliable silicone elastomers for high-temperature applicationscitations
- 2018Advanced Wound Care Adhesives with New Functional Properties
- 2018Thermal degradation mechanisms of silicone elastomer
- 2018Silicone elastomers and their preparation and use
- 2018Insight into the Dielectric Breakdown of Elastomers
- 2018Glycerol-silicone elastomers – current status and perspectives
- 2018Glycerol-silicone elastomers as active membranes for wound dressings and beyond
- 2018Deeper Insight into the Dielectric Breakdown of Elastomers
- 2017Novel high dielectric constant hybrid elastomers as candidates for dielectric elastomer actuators
- 2016Glycerol as high-permittivity liquid filler in dielectric silicone elastomerscitations
- 2016A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomerscitations
- 2016Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsionscitations
- 2015Mechanically invisible encapsulations
- 2014Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomerscitations
- 2013Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymercitations
Places of action
Organizations | Location | People |
---|
document
Silicone elastomer map: design the ideal elastomer
Abstract
Soft, stretchable and light-weight transducers are most sought after for research on advanced applications like stretchable electronics, soft robotics and energy harvesters. Stretchable electronics require elastomers that have high elongation at break, high dielectric permittivity and high breakdown strength. Commercial silicone elastomer formulations often do not encompass all the necessary properties required to function effectively as stretchable transducers but they are used out of familiarity. In this study, most commonly used commercial silicone formulations are formulated with different stoichiometry and also blends of these formulations are made in order to manipulate their resulting properties. The properties of these blends like ultimate stress and strain, Young’s modulus, dielectric permittivity and breakdown strength are investigated and mapped to identify those that have the best suited properties for fabricating soft stretchable devices. On a research level, Sylgard 184, Sylgard 186, Ecoflex 00-50, Ecoflex 00-30 and Ecoflex 00-10 are widely used for fabricating such soft devices and hence they will be worked upon in this study. The elastomers obtained using the methods of mixing illustrated here can act as a starting point for conceptualizing the feasibility of a product on research level.