People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guina, Mircea
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Detection of BiGa hetero-antisites at Ga(As,Bi)/(Al,Ga)As interfacescitations
- 2023Tuneable Nonlinear Spin Response in a Nonmagnetic Semiconductor
- 2022Luminescent (Er,Ho)2O3 thin films by ALD to enhance the performance of silicon solar cellscitations
- 2021Luminescent (Er,Ho)2O3 thin films by ALD to enhance the performance of silicon solar cellscitations
- 2021Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filteringcitations
- 2021Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filteringcitations
- 2019Optimization of Ohmic Contacts to p-GaAs Nanowirescitations
- 2019Optimization of Ohmic Contacts to p-GaAs Nanowirescitations
- 2019Thermophotonic cooling in GaAs based light emitterscitations
- 2019V-groove etched 1-eV-GaInNAs nipi solar cellcitations
- 2019Observation of local electroluminescent cooling and identifying the remaining challenges
- 2019Gradients of Be-dopant concentration in self-catalyzed GaAs nanowirescitations
- 2019Influence of ex-situ annealing on the properties of MgF2 thin films deposited by electron beam evaporationcitations
- 2018Surface doping of GaxIn1−xAs semiconductor crystals with magnesiumcitations
- 2017The role of epitaxial strain on the spontaneous formation of Bi-rich nanostructures in Ga(As,Bi) epilayers and quantum wellscitations
- 2017Structured metal/polymer back reflectors for III-V solar cells
- 2017Photo-acoustic Spectroscopy of Resonant Absorption in III-V Semiconductor Nanowires
- 2016High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD techniquecitations
- 2016Determination of composition and energy gaps of GaInNAsSb layers grown by MBEcitations
- 2016Optical Energy Transfer and Loss Mechanisms in Coupled Intracavity Light Emitterscitations
- 2016Combined MBE-MOCVD process for high-efficiency multijunction solar cells
- 2016High efficiency multijunction solar cells: Electrical and optical properties of the dilute nitride sub-junctions
- 2016Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-xBix/GaAs quantum wellscitations
- 2015Defects in dilute nitride solar cells
- 2015Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1-xBix epilayerscitations
- 2015Dilute nitrides for boosting the efficiency of III-V multijunction solar cells
- 2015Detecting lateral composition modulation in dilute Ga(As,Bi) epilayerscitations
- 2015Te-doping of self-catalyzed GaAs nanowirescitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2014Unveiling and controlling the electronic structure of oxidized semiconductor surfaces: Crystalline oxidized InSb(100)(1 × 2)-Ocitations
- 2012Dilute nitride and GaAs n-i-p-i solar cellscitations
- 2011Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk laserscitations
- 2011Ultrathin (1*2)-Sn layer on GaAs(100) and InAs(100) substrates:A catalyst for removal of amorphous surface oxidescitations
- 2008Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compressioncitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Observation of local electroluminescent cooling and identifying the remaining challenges
Abstract
| openaire: EC/H2020/638173/EU//iTPX ; The cooling of a light emitting diode (LED) by photons carrying out more energy than was used to electrically bias the device, has been predicted decades ago. 1, 2 While this effect, known as electroluminescent cooling (ELC), may allow e.g. fabricating thermophotonic heat pumps (THP) providing higher efficiencies than the existing solid state coolers, 3 ELC at powers sufficient for practical applications is still not demonstrated. To study high-power ELC we use double diode structures (DDSs), which consist of a double heterojunction (DHJ) LED and a photodiode (PD) grown within a single technological process and, thus, enclosed in a cavity with a homogeneous refractive index. 4, 5 The presence of the PD in the structure allows to more directly probe the efficiency of the LED, without the need for light extraction from the system, reducing undesirable losses. Our analysis of experimentally measured I - V curves for both the LED and the PD suggests that the local efficiency of the high-performance LEDs we have fabricated is approximately 110%, exceeding unity over a wide range of injection current densities of up to about 100A/cm 2 . At present the efficiency of the full DDS, however, still falls short of unity, not allowing direct evidence of the extraction of thermal energy from the LED. Here we review our previous studies of DDS for high-power EL cooling and discuss in more detail the remaining bottlenecks for demonstrating high-power ELC in the DDS context: the LED surface states, resistive and photodetection losses. In particular we report our first surface passivation measurements. Further optimization therefore mainly involves reducing the influence of the surface states, e.g. using more efficient surface passivation techniques and optimizing the PD. This combined with the optimization of the DDS layer thicknesses and contact metallization schemes is expected to finally allow purely experimental observation of high-power ELC. ; Peer reviewed