Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lekawa-Raus, Agnieszka

  • Google
  • 7
  • 28
  • 159

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives21citations
  • 2020Carbon nanotube films spun from a gas phase reactor for manufacturing carbon nanotube film/carbon fibre epoxy hybrid composites for electrical applications25citations
  • 2018The operational window of carbon nanotube electrical wires treated with strong acids and oxidants16citations
  • 2018Carbon nanotube fibers doped with iron via Fenton reactioncitations
  • 2018Towards the development of superhydrophobic carbon nanomaterial coatings on wood46citations
  • 2017Extreme magneto-transport of bulk carbon nanotubes in sorted electronic concentrations and aligned high performance fiber22citations
  • 2015Soldering of carbon materials using transition metal rich alloys29citations

Places of action

Chart of shared publication
Janiszewska-Latterini, Dominika
1 / 1 shared
Łukawski, Damian
1 / 2 shared
Hochmańska-Kaniewska, Patrycja
1 / 1 shared
Koziol, Krzysztof K. K.
3 / 11 shared
Chen, Jinhu
1 / 5 shared
Trevarthen, James
1 / 3 shared
Lukawski, Damian
2 / 3 shared
Gizewski, Tomasz
2 / 4 shared
Rahatekar, Sameer S.
1 / 9 shared
Hazra, Kalyan
1 / 3 shared
Orlinski, Krzysztof
1 / 2 shared
Szybowicz, Mirosław
1 / 2 shared
Jozwik, Iwona
2 / 4 shared
Lepak-Kuc, Sandra Katarzyna
2 / 3 shared
Boncel, Sławomir
1 / 3 shared
Nowicka, Ariadna B.
1 / 1 shared
Jakubowska, Małgorzata
2 / 30 shared
Boncel, Slawomir
1 / 3 shared
Taborowska, Patrycja
1 / 3 shared
Koziol, Krzysztof
1 / 5 shared
Dudkowiak, Alina
1 / 2 shared
Lisiecki, Filip
1 / 1 shared
Kozioł, Krzysztof Kazimierz
1 / 1 shared
Rickel, Dwight G.
1 / 1 shared
Bulmer, John S.
1 / 2 shared
Balakirev, Fedor F.
1 / 2 shared
Burda, Marek
1 / 3 shared
Gruszczyk, Andrzej
1 / 1 shared
Chart of publication period
2023
2020
2018
2017
2015

Co-Authors (by relevance)

  • Janiszewska-Latterini, Dominika
  • Łukawski, Damian
  • Hochmańska-Kaniewska, Patrycja
  • Koziol, Krzysztof K. K.
  • Chen, Jinhu
  • Trevarthen, James
  • Lukawski, Damian
  • Gizewski, Tomasz
  • Rahatekar, Sameer S.
  • Hazra, Kalyan
  • Orlinski, Krzysztof
  • Szybowicz, Mirosław
  • Jozwik, Iwona
  • Lepak-Kuc, Sandra Katarzyna
  • Boncel, Sławomir
  • Nowicka, Ariadna B.
  • Jakubowska, Małgorzata
  • Boncel, Slawomir
  • Taborowska, Patrycja
  • Koziol, Krzysztof
  • Dudkowiak, Alina
  • Lisiecki, Filip
  • Kozioł, Krzysztof Kazimierz
  • Rickel, Dwight G.
  • Bulmer, John S.
  • Balakirev, Fedor F.
  • Burda, Marek
  • Gruszczyk, Andrzej
OrganizationsLocationPeople

document

Carbon nanotube fibers doped with iron via Fenton reaction

  • Boncel, Slawomir
  • Jozwik, Iwona
  • Taborowska, Patrycja
  • Lepak-Kuc, Sandra Katarzyna
  • Lekawa-Raus, Agnieszka
  • Jakubowska, Małgorzata
Abstract

In a wildly spreading research on carbon nanotube fibers as a potential material for the future, one of the most promising fields are electrical and electronic engineering. As it was mentioned repeatedly the main thing that need to be dealt with for a serious consideration of carbon nanotube structures in application as good conducting wires is a necessity of improvement their electrical conductivity values. In the many possibilities of such electrical properties improve, one of the best is chemical doping. In this work we present a oxidativedoping treatment on carbon nanotube fibers via Fenton reaction. However the first assumptions on introduction hydroxide ion doping has changed after performing experiments. The reaction resulted in iron doping on carbon nanotube fibers. Such a result most probably is associated with a great reactivity of carbon nanotube with iron particles. This reactivity is being used in carbon nanotube structures production procedure,due to catalytic action of iron in the issue of carbon nanotube synthesis. This result, however differs from intentions gave us new carbon nanotube-iron composite, which seems to have a great potential for further research.

Topics
  • impedance spectroscopy
  • Carbon
  • experiment
  • nanotube
  • composite
  • iron
  • wire
  • electrical conductivity