People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Glückstad, Jesper
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Light robotics
- 2022Light robotics:new micro-drones powered by light
- 2019Optimization of 3D-printed microstructures for investigating the properties of the mucus biobarriercitations
- 2018Light Robotics for Nanomedicine
- 2018Light Robotics – a growing toolbox for biomedical research
- 2018Optically fabricated and controlled microtool as a mobile heat source in microfluidics
- 2016Light‐driven Nano‐robotics - Invited Plenary Presentation, IEEE NANO 2016
- 2016Light‐driven Nano‐robotics - Invited Plenary Presentation, IEEE NANO 2016.
- 2013Structure-mediated nanoscopy
- 2013New two-photon based nanoscopic modalities and optogenetics
- 2013A new nano-biophotonics toolbox
- 2012Laser trapping and spatial light modulators
- 2012Towards Light‐guided Micro‐robotics
- 2012Wave-guided optical waveguidescitations
- 2012Micromanipulation and microfabrication for optical microrobotics
- 2012Optical Robotics in Mesoscopia
- 2012Light-driven nano-robotics for sub-diffraction probing and sensing
- 2012Mobile Waveguides: Freestanding Waveguides Steered by Light
- 2011Functionalized 2PP structures for the BioPhotonics Workstationcitations
- 2011Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shapercitations
- 2009Optically controlled three-dimensional assembly of microfabricated building blocks
- 2009Optical microassembly platform for constructing reconfigurable microenvironment for biomedical studiescitations
- 2007Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulation
Places of action
Organizations | Location | People |
---|
document
Optically fabricated and controlled microtool as a mobile heat source in microfluidics
Abstract
Microfluidic systems have gained much interest in the past decade as they tremendously reduce sample volume requirements for investigating different phenomena and for various medical, pharmaceutical and defense applications. Rapid heat transfer and efficient diffusive material transport are among the benefits of miniaturization. These have been achieved so far by tediously designing and fabricating application-specific microfluidic chambers or by employing microdevices that can be difficult to integrate in microfluidic systems. In this work, we present the fabrication and functionalization via two-photon polymerization and physical vapor deposition of microstructures that serve as heat sources in microfluidic devices upon laser illumination. In contrast to other existing methods that rely on photo-thermal effects, our microtools are amenable to optical manipulation and can be actuated in specific locations where heat generation is desired. Heating effects manifest in the presence of a temperature gradient, induced fluid flow and the formation of microbubbles.