People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taghavi, Majid
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2019Electroactive textile actuators for breathability control and thermal regulation devicescitations
- 2019Thermoplastic electroactive gels for 3D-printable artificial musclescitations
- 2018Electroactive textile actuators for wearable and soft robotscitations
- 2018Towards electroactive gel artificial muscle structurescitations
Places of action
Organizations | Location | People |
---|
document
Towards electroactive gel artificial muscle structures
Abstract
Polyvinyl chloride (PVC) gel is a promising, soft-smart material with electroactive properties, which can be used to make soft robotic actuators with impressive characteristics. However, until now, PVC gel actuators have always been made with rigid metal electrodes, preventing the fabrication of fully soft devices. Here, we present a novel conceptual design for PVC gel actuators. By moving the microstructure from the electrode to the gel itself, we enable PVC gels which exhibit linear contraction when sandwiched between planar electrodes made from any conductive material. We investigate four different microstructures, three of which exhibit higher displacements compared with a traditional (mesh-based) PVC gel actuator. The best performing gel achieved a displacement of 26% of the microstructure height. Finally, we demonstrate an entirely soft PVC gel actuator with thin conductive rubber electrodes. This article is a first step towards totally compliant artificial muscles made from soft electrodes and PVC gels.