Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Biasi, Roberto

  • Google
  • 1
  • 12
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes2citations

Places of action

Chart of shared publication
Pereira Do Carmo, Joao Pedro N.
1 / 1 shared
Gambicorti, Lisa
1 / 1 shared
Simonetti, Francesca
1 / 1 shared
Riccardi, Armando
1 / 2 shared
Molina, Marco
1 / 1 shared
Damato, Francesco
1 / 1 shared
Zuccaro Marchi, Alessandro
1 / 1 shared
Gallieni, Daniele
1 / 2 shared
Lisi, Franco
1 / 1 shared
Salinari, Piero
1 / 1 shared
Ruder, Nikolaus
1 / 1 shared
Duò, Fabrizio
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Pereira Do Carmo, Joao Pedro N.
  • Gambicorti, Lisa
  • Simonetti, Francesca
  • Riccardi, Armando
  • Molina, Marco
  • Damato, Francesco
  • Zuccaro Marchi, Alessandro
  • Gallieni, Daniele
  • Lisi, Franco
  • Salinari, Piero
  • Ruder, Nikolaus
  • Duò, Fabrizio
OrganizationsLocationPeople

document

Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

  • Pereira Do Carmo, Joao Pedro N.
  • Gambicorti, Lisa
  • Simonetti, Francesca
  • Riccardi, Armando
  • Molina, Marco
  • Biasi, Roberto
  • Damato, Francesco
  • Zuccaro Marchi, Alessandro
  • Gallieni, Daniele
  • Lisi, Franco
  • Salinari, Piero
  • Ruder, Nikolaus
  • Duò, Fabrizio
Abstract

The increasing interest on space telescopes for scientific applications leads to implement the manufacturing technology of the most critical element, i.e. the primary mirror: being more suitable a large aperture, it must be lightweight and deployable. The presented topic was originally addressed to a spaceborne DIAL (Differential Absorption LIDAR) mission operating at 935.5 nm for the measurement of water vapour profile in atmosphere, whose results were presented at ICSO 2006 and 2008. Aim of this paper is to present the latest developments on the main issues related to the fabrication of a breadboard, covering two project critical areas identified during the preliminary studies: the design and performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch via Electrostatic Locking (EL) between mirror and backplane. The described work is developed under the ESA/ESTEC contract No. 22321/09/NL/RA. The lightweight mirror is structured as a central sector surrounded by petals, all of them actively controlled to reach the specified shape after initial deployment and then maintained within specs for the entire mission duration. The presented study concerns: a) testing the Carbon Fiber Reinforced Plastic (CFRP) backplane manufacturing and EL techniques, with production of suitable specimens; b) actuator design optimisation; c) design of the deployment mechanism including a high precision latch; d) the fabrication of thin mirrors mock-ups to validate the fabrication procedure for the large shells. The current activity aims to the construction of an optical breadboard capable of demonstrating the achievement of all these coupled critical aspects: optical quality of the thin shell mirror surface, actuators performances and back-plane - EL subsystem functionality....

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • Carbon
  • ultraviolet photoelectron spectroscopy