Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Trolès, J.

  • Google
  • 9
  • 45
  • 304

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022Specific trends in phosphate glass crystallization7citations
  • 2021Specific trends in phosphate glass crystallization7citations
  • 2017Chalcogenide glass sensors for bio-molecule detection15citations
  • 2016Generation of broadband mid-infrared supercontinuum radiation in cascaded soft-glass fibers2citations
  • 2016Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region4citations
  • 2016Ultrafast laser processing of refractive index changes in bulk Ge15As15S70 chalcogenide glass for photonics applications in the mid-infraredcitations
  • 2004Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses35citations
  • 2003Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses179citations
  • 2001Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques55citations

Places of action

Chart of shared publication
Lebullenger, R.
2 / 3 shared
Rocherullé, J.
3 / 8 shared
Petit, L.
1 / 29 shared
Zhang, X. H.
3 / 7 shared
Massera, J.
2 / 27 shared
Cai, Muzhi
2 / 4 shared
Bénard-Rocherullé, P.
2 / 2 shared
Calvez, L.
3 / 8 shared
Coq, D. Le
2 / 3 shared
Petit, Laëtitia
1 / 61 shared
Coleman, G. J.
1 / 1 shared
Jiang, S.
1 / 5 shared
Luo, T.
1 / 3 shared
Lucas, Philippe
1 / 3 shared
Boussard-Plédel, C.
1 / 14 shared
Cantoni, C.
1 / 7 shared
Bureau, Bruno
1 / 126 shared
Yang, Z.
1 / 27 shared
Manek-Hönninger, I.
1 / 2 shared
Kieleck, C.
1 / 1 shared
Robin, T.
1 / 5 shared
Kneis, C.
1 / 1 shared
Cadier, B.
1 / 4 shared
Eichhorn, M.
1 / 2 shared
Caillaud, Celine
2 / 12 shared
Brilland, L.
1 / 6 shared
Massera, Jonathan
1 / 45 shared
Oudadesse, H.
1 / 11 shared
Lecoarer, E.
1 / 1 shared
Velpula, P. K.
1 / 1 shared
Calvez, Laurent
1 / 78 shared
Kern, P.
1 / 8 shared
Nazabal, Virginie
1 / 125 shared
Bhuyan, M. K.
1 / 4 shared
Arezki, B.
1 / 2 shared
Colombier, J. -P.
1 / 1 shared
Stoian, R.
1 / 6 shared
Damico, C.
1 / 3 shared
Martin, G.
1 / 19 shared
Sanchez, F.
3 / 7 shared
Cherukulappurath, S.
2 / 4 shared
Smektala, F.
3 / 21 shared
Boudebs, Georges
3 / 6 shared
Guignard, M.
1 / 2 shared
Leblond, H.
1 / 1 shared
Chart of publication period
2022
2021
2017
2016
2004
2003
2001

Co-Authors (by relevance)

  • Lebullenger, R.
  • Rocherullé, J.
  • Petit, L.
  • Zhang, X. H.
  • Massera, J.
  • Cai, Muzhi
  • Bénard-Rocherullé, P.
  • Calvez, L.
  • Coq, D. Le
  • Petit, Laëtitia
  • Coleman, G. J.
  • Jiang, S.
  • Luo, T.
  • Lucas, Philippe
  • Boussard-Plédel, C.
  • Cantoni, C.
  • Bureau, Bruno
  • Yang, Z.
  • Manek-Hönninger, I.
  • Kieleck, C.
  • Robin, T.
  • Kneis, C.
  • Cadier, B.
  • Eichhorn, M.
  • Caillaud, Celine
  • Brilland, L.
  • Massera, Jonathan
  • Oudadesse, H.
  • Lecoarer, E.
  • Velpula, P. K.
  • Calvez, Laurent
  • Kern, P.
  • Nazabal, Virginie
  • Bhuyan, M. K.
  • Arezki, B.
  • Colombier, J. -P.
  • Stoian, R.
  • Damico, C.
  • Martin, G.
  • Sanchez, F.
  • Cherukulappurath, S.
  • Smektala, F.
  • Boudebs, Georges
  • Guignard, M.
  • Leblond, H.
OrganizationsLocationPeople

document

Chalcogenide glass sensors for bio-molecule detection

  • Coleman, G. J.
  • Jiang, S.
  • Luo, T.
  • Lucas, Philippe
  • Boussard-Plédel, C.
  • Cantoni, C.
  • Trolès, J.
  • Bureau, Bruno
  • Yang, Z.
Abstract

Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens. © 2017 SPIE.

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • melt
  • glass
  • glass
  • viscosity
  • drawing
  • vibrational spectroscopy