People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ottevaere, Heidi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Freeform beam shaping optics for large-size 3D scaffold fabrication with high accuracy
- 2022Fabrication of large-scale scaffolds with microscale features using light sheet stereolithographycitations
- 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatmentcitations
- 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC systemcitations
- 2018Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterizationcitations
- 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperaturescitations
- 2016Determination of the radial profile of the photoelastic coefficient of polymer optical fibers
- 2016Optofluidic multi-measurement system for the online monitoring of lubricant oilcitations
- 2016Chapter 21 – Biodegradable polyesters: from monomer to application
- 2015Algorithms for determining the radial profile of the photoelastic coefficient in glass and polymer optical fibrescitations
- 2014On a possible method to measure the radial profile of the photoelastic constant in step-index optical fiber
- 2013Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibres
- 2012Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensor
- 2008Functional polymer materials for optical applications
- 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modules
- 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modules
Places of action
Organizations | Location | People |
---|
document
Determination of the radial profile of the photoelastic coefficient of polymer optical fibers
Abstract
We determine the radial profile of the photoelastic constant C(r) in two single mode and one multimode polymer optical fibers (POFs), all fabricated from polymethylmethacrylate (PMMA). To determine C(r) we first determine the retardance of the laterally illuminated fiber submitted to a known tensile stress uniformly distributed over the fiber cross-section. Then we determine the inverse Abel transform of the measured retardance to finally obtain C(r). We compare two algorithms based on the Fourier theory to perform the inverse transform. We obtain disparate distributions of C(r) in the three fibers. The mean value of C(r) varies from-7.6x10(-14) to 5.4x10(-12)Pa(-1). This indicates that, in contrast to glass fibers, the radial profile of the photoelastic constant can considerable vary depending on the type and treatment of POFs, even when made from similar materials, and hence the photoelastic constant should be measured for each type of POF.