Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lecestre, Aurelie

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Self-aligned BCB planarization method for high frequency signal injection in a VCSEL with an integrated modulator3citations

Places of action

Chart of shared publication
Rousset, Bernard
1 / 1 shared
Reig, Benjamin
1 / 7 shared
Thienpont, Hugo
1 / 83 shared
Almuneau, Guilhem
1 / 23 shared
Lombart, Ludovic Marigo
1 / 2 shared
Panajotov, Krassimir
1 / 10 shared
Doucet, Jean-Baptiste
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Rousset, Bernard
  • Reig, Benjamin
  • Thienpont, Hugo
  • Almuneau, Guilhem
  • Lombart, Ludovic Marigo
  • Panajotov, Krassimir
  • Doucet, Jean-Baptiste
OrganizationsLocationPeople

document

Self-aligned BCB planarization method for high frequency signal injection in a VCSEL with an integrated modulator

  • Rousset, Bernard
  • Reig, Benjamin
  • Thienpont, Hugo
  • Almuneau, Guilhem
  • Lombart, Ludovic Marigo
  • Panajotov, Krassimir
  • Doucet, Jean-Baptiste
  • Lecestre, Aurelie
Abstract

The huge increase of datacom capacities requires lasers sources with more and more bandwidth performances. Vertical-Cavity Surface-Emitting Lasers (VCSEL) in direct modulation is a good candidate, already widely used for short communication links such as in datacenters. Recently several different approaches have been proposed to further extend the direct modulation bandwidth of these devices, by improving the VCSEL structure, or by combining the VCSEL with another high speed element such as lateral slow light modulator or transistor/laser based structure (T-VCSEL). <br/><br/>We propose to increase the modulation bandwidth by vertically integrating a continuous-wave VCSEL with a high-speed electro-modulator. This vertical structure implies multiple electrodes with sufficiently good electrical separation between the different input electrical signals. This high frequency modulation requires both good electrical insulation between metal electrodes and an optimized design of the coplanar lines. BenzoCyclobutene (BCB) thanks to its low dielectric constant, low losses, low moisture absorption and good thermal stability, is often used as insulating layer. Also, BCB planarization offers the advantages of simpler and more reliable technological process flow in such integrated VCSEL/modulator structures with important reliefs. As described by Burdeaux et al. a degree of planarization (DOP) of about 95% can be achieved by simple spin coating whatever the device thickness. <br/><br/>In most of the cases, the BCB planarization process requires an additional photolithography step in order to open an access to the mesa surface, thus involving a tight mask alignment and resulting in a degraded planarization. <br/><br/>In this paper, we propose a self-aligned process with improved BCB planarization by combining a hot isostatic pressing derived from nanoimprint techniques with a dry plasma etching step.

Topics
  • impedance spectroscopy
  • surface
  • dielectric constant
  • hot isostatic pressing
  • aligned
  • spin coating
  • plasma etching