People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wierach, Peter
Clausthal University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (44/44 displayed)
- 2025Multifunctional characterization of high tensile strength PEO/PVP blend based composites with InAs nanowire fillers for structural sodium ion batteries
- 2024The effect of low temperatures on monitoring structural health using acoustic-ultrasonic piezoelectric transducers on composite structures.
- 2024Innovative welding integration of acousto-ultrasonic composite transducers onto thermoplastic composite structurescitations
- 2024Design and Characterization of Poly(ethylene oxide)-Based Multifunctional Composites with Succinonitrile Fillers for Ambient-Temperature Structural Sodium-Ion Batteries
- 2024Development and Multifunctional Characterization of a Structural Sodium-Ion Battery Using a High-Tensile-Strength Poly(ethylene oxide)-Based Matrix Compositecitations
- 2023Acousto-ultrasonic composite transducers integration into thermoplastic composite structures via ultrasonic welding
- 2023An Efficient Procedure for Bonding Piezoelectric Transducers to Thermoplastic Composite Structures for SHM Application andIts Durability in Aeronautical Environmental Conditionscitations
- 2022Multifunctional Hybrid Fiber Composites for Energy Transfer in Future Electric Vehiclescitations
- 2022CHALLENGES OF UPSCALING POWER COMPOSITES FOR AEROSPACE APPLICATIONS
- 2021Robust and Powerful Structural Integrated Thin Film Supercapacitors for Lightweight Space Structures
- 2021Taurine-Modified Boehmite Nanoparticles for GFRP Wind Turbine Rotor Blade Fatigue Life Enhancementcitations
- 2021Integrated thin film Supercapacitor as multifunctional Sensor Systemcitations
- 2019Powder binders used for the manufacturing of wind turbine rotor blades. Part 2. Investigation of binder effects on the mechanical performance of glass fiber reinforced polymerscitations
- 2019Structure Integrated Supercapacitors for Space Applicationscitations
- 2018Multifunctional Composites for Future Energy Storage in Aerospace Structurescitations
- 2018Ultrasonic Wave Propagation in Aerospace Structures: Highly Efficient Simulation with a Minimal Model
- 2018Flexural Mechanical Properties of Hybrid Epoxy Composites Reinforced with Nonwoven Made of Flax Fibres and Recycled Carbon Fibrescitations
- 2018Powder binders used for the manufacturing of wind turbine rotor blades. Part 1: Characterisation of resin-binder interaction and preform propertiescitations
- 2017Carbon Nanotubes Modified Solid Electrolyte-Based Structural Supercapacitors and their Temperature Influence
- 2016Nanostructured all-solid-state supercapacitor based on Li1.4Al0.4Ti1.6(PO4)3 ceramic electrolyte
- 2016Actuation mechanisms of carbon nanotube-based architectures
- 2016Damage Reconstruction in Complex Composite Structures using Lamb Waves
- 2016Electrical and Mechanical Properties of LiAlTi(PO4)3 Solid Electrolyte Based Power Composites
- 2016Structural integrated sensor and actuator systems for active flow controlcitations
- 2015Identification of barely visible impact damages on a stiffened composite panel with a probability-based approachcitations
- 2015Identification of barely visible impact damages on a stiffened composite panel with a probability-based approach
- 2015FIRE PROTECTED CARBON FIBRE REINFORCED PLASTICS FOR STRUCTURAL AIRCRAFT COMPONENTS
- 2015ACTUATED TENSILE TESTING OF CNT BASED ARCHITECTURES
- 2015Lamb Wave Propagation in Complex Geometries - A Minimal Model Approach
- 2014Resonant approach for testing glass-fiber-reinforced composites in the VHCF-regime
- 2014MEMS Pressure Sensors Embedded into Fiber Composite Airfoilscitations
- 2014Durability of Co-bonded Piezoelectric Transducerscitations
- 2014Mode Selective Actuator-Sensor System for Lamb Wave-Based Structural Health Monitoring
- 2014Investigating the VHCF of composite materials using new testing methods and a new fatigue damage model
- 2014Carbon Nanotube Strain Measurements via Tensile Testing
- 2014Active Flow Control via Piezo-Actuated Airfoils for High-Lift
- 2013Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: evaluation of stress detectioncitations
- 2013Characterization of multifunctional skin-material for morphing leading-edge applicationscitations
- 2013A Dynamical Actuated Lip at a Blowing Slot for Active High-Lift
- 2013Design of mode selective actuators for Lamb wave excitation in composite platescitations
- 2012Experimental investigation of the very high cycle fatigue behaviour of fibre reinforced composites
- 2012Characterization of mode selective actuator and sensor systems for Lamb wave excitation
- 2000Development of Adaptive Structures with Encapsulated PZT-Patches
- 2000Development of Encapsulated PZT-Patches for Adaptive Structures
Places of action
Organizations | Location | People |
---|
document
Actuation mechanisms of carbon nanotube-based architectures
Abstract
State of the art smart materials such as piezo ceramics or electroactive polymers cannot feature both, mechanicalstiffness and high active strain. Moreover, properties like low density, high mechanical stiffness and high strainat the same time driven by low energy play an increasingly important role for their future application. Carbonnanotubes (CNT), show this behavior. Their active behavior was observed 1999 the first time using paper-likemats made of CNT. Therefore the CNT-papers are electrical charged within an electrolyte thus forming a doublelayer.The measured deflection of CNT material is based on the interaction between the charged high surface areaformed by carbon nanotubes and ions provided by the electrolyte. Although CNT-papers have been extensivelyanalyzed as well at the macro-scale as nano-scale there is still no generally accepted theory for the actuationmechanism. This paper focuses on investigations of the actuation mechanisms of CNT-papers in comparison tovertically aligned CNT-arrays. One reason of divergent results found in literature might be attributed to differenttypes of CNT samples. While CNT-papers represent architectures of short CNTs which need to bridge each otherto form the dimensions of the sample, the continuous CNTs of the array feature a length of almost 3 mm, alongwhich the experiments are carried out. Both sample types are tested within an actuated tensile test set-upunder different conditions. While the CNT-papers are tested in water-based electrolytes with comparably smallredox-windows the hydrophobic CNT-arrays are tested in ionic liquids with comparatively larger redox-ranges.Furthermore an in-situ micro tensile test within an SEM is carried out to prove the optimized orientation of theMWCNTs as result of external load. It was found that the performance of CNT-papers strongly depends onthe test conditions. However, the CNT-arrays are almost unaffected by the conditions showing active responseat negative and positive voltages. A micro alignment as result of tensile stress can be proven. A comparison ofboth results point out that the actuation mechanism strongly depends on the weakest bonds of the architectures: Van-der-Waals-bonds vs. covalent C-bonds