People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rossiter, Jonathan M.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Soft alchemycitations
- 2024Soft alchemy:a comprehensive guide to chemical reactions for pneumatic soft actuationcitations
- 2023Robotic Fish driven by Twisted and Coiled Polymer Actuators at High Frequencies
- 2023Electric Field-Driven Dielectrophoretic Elastomer Actuatorscitations
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2021Liquid metal logic for soft roboticscitations
- 2021B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prosthesescitations
- 2021B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prosthesescitations
- 2019Lighting up soft roboticscitations
- 2019Pellicular Morphing Surfaces for Soft Robotscitations
- 2019Electroactive textile actuators for breathability control and thermal regulation devicescitations
- 2019A soft matter computer for soft robotscitations
- 2019Thermoplastic electroactive gels for 3D-printable artificial musclescitations
- 2019Tiled Auxetic Cylinders for Soft Robotscitations
- 2018Electroactive textile actuators for wearable and soft robotscitations
- 2018Towards electroactive gel artificial muscle structurescitations
- 2017Respiratory Simulator for Robotic Respiratory Tract Treatments
- 2017Robotics, Smart Materials, and Their Future Impact for Humans
- 2016Biomimetic photo-actuationcitations
- 2015Hiding the squid:patterns in artificial cephalopod skincitations
- 2015Hiding the squidcitations
- 2015Modelling and analysis of pH responsive hydrogels for the development of biomimetic photo-actuating structurescitations
- 2015A compliant soft-actuator laterotactile displaycitations
- 2014Thermal response of novel shape memory polymer-shape memory alloy hybridscitations
- 2014Hydrogel core flexible matrix composite (H-FMC) actuatorscitations
- 2014Kirigami design and fabrication for biomimetic roboticscitations
- 2014Shape memory polymer hexachiral auxetic structures with tunable stiffnesscitations
- 2014Assessment of Biodegradable Materials for Next Generation of Artificial Muscles
- 2014Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plantscitations
- 2012Curved Type Pneumatic Artificial Rubber Muscle Using Shape-Memory Polymer
- 2012Bioinspired Control of Electro-Active Polymers for Next Generation Soft Robotscitations
- 2012Smart Radially Folding Structurescitations
- 2012Design of a deployable structure with shape memory polymerscitations
Places of action
Organizations | Location | People |
---|
document
Biomimetic photo-actuation
Abstract
Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pK<sub>a</sub> has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems