People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carter, Richard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Ultra-short pulsed laser welding of crystals, glasses, metals, and more
- 20233D Laser Beam Shaping for Manufacturing within Volumes
- 2023Industrial ultrashort pulsed laser welding of copper and titanium to quartz and glass components for optical applications
- 2023Laser surface texturing of structural components for residual stress alleviation during ultrashort pulsed laser welding
- 2021Stress Induced Birefringence of Glass-to-Metal Ultrashort Pulse Welded Components
- 2019High yield ultrafast laser microwelding process for direct joining of metal-to-glass
- 2018Laser-based fabrication of microfluidic devices for porous media applicationscitations
- 2018Rapid Laser Manufacturing of Microfluidic Devices from Glass Substratescitations
- 2017Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloycitations
- 2017Fabrication of three-dimensional micro-structures in glass by picosecond laser micro-machining and welding
- 2016Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser weldscitations
- 2016Picosecond laser welding of optical to structural materials
- 2016Surface Separation Investigation of Ultrafast Pulsed Laser Welding
- 2014Picosecond laser welding of similar and dissimilar materialscitations
- 2012Modelling of Long Period Gratings with Metallic (Pd) Jacket
- 2009All Fibre based Hydrogen Sensing using Palladium coated Long Period Gratings
Places of action
Organizations | Location | People |
---|
document
Surface Separation Investigation of Ultrafast Pulsed Laser Welding
Abstract
Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.